F=8" UNIVERSITY OF NICOSIA
s TTANETIZTHMIO AEYKQZIAZ

COMP-421 Compiler Design

Presented by
Dr loanna Dionysiou



Administrative

Next time reading assignment

— [ALSUO7] Chapters 1,2
« [ALSUOQ7] Sections 1.1 - 1.5 (cover in class)
« [ALSUOQ7] Section 1.6 (read on your own)

— Programming language basics that you should be familiar
— Email me questions (if any) before next class

« [ALSUQ7] We will cover selected parts from all sections

=" UNIVERSITY OF NICOSIA
22! MANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou




Lecture Outline

Chapter 1 - Introduction
— Definition
— Structure of Compiler

e Compilation parts
— Analysis, Synthesis

* Phases of a compiler
— An Example: Translation of a statement
— Evolution of Programming Languages

— Building a Compiler and Applications of Compiler
Technology

=a" UNIVERSITY OF NICOSIA
s=a| MANEMIZTHMIO AEYKOQZIAX Copyright (c) 2012 loanna Dionysiou




Compiler: Simple Definition

A compiler is a program that reads a program
written in one language and translates it into
an equivalent program in another language

source . | Compiler ; target
program program
error
messages
. Target
Input Program » output

=a" UNIVERSITY OF NICOSIA
s=a| MANEMIZTHMIO AEYKOQZIAX Copyright (c) 2012 loanna Dionysiou




The context of a compiler

In addition to a compiler, several other
programs may be required to create an
executable target program

— Preprocessor

— Assembler

— Linker/Loader

These are the cousins of the compilers!

Y UNIVERSITY OF NICOSIA
s MANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou




Cousins of the compiler

Preprocessors
— Macro processing
— File inclusion

Assemblers

— Some compilers produce assembly code that is
passed to an assembler for further processing

— The assembler then produces machine code
Linker/loader
— Applies to large programs in multiple files

— Linker resolves the address (location) of variables
— Loader combines all the pieces into an executable

- ?UNIVERSITY OF NICOSIA
! [TANENMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou e




Lecture Outline

— Structure of Compiler

e Compilation parts
— Analysis, Synthesis

* Phases of a compiler

- " UNIVERSITY OF NICOSIA
el MANEMIZTHMIO AEYKOQZIAX

Copyright (c) 2012 loanna Dionysiou




Compilation Process

There are two parts to compilation
— Analysis
» Break up the source program into pieces

» Create an intermediate representation of the source
program

— Synthesis

« Construct the desired target program from the
iIntermediate representation

~ target
" program

source
program

Com?_piler

- " UNIVERSITY OF NICOSIA
Ss NMANEMIZTHMIO AEYKOZIAX Copyright (c) 2012 loanna Dionysiou




Analysis of Source Program

It consists of three phases (front-end)

— Lexical analysis
 Linear analysis, scanning

« Stream of characters are read and grouped into tokens
(sequence of characters with a collective meaning)

— Syntax analysis
 Hierarchical analysis, parsing

« Tokens are grouped hierarchically into nested
collections with collective meaning

— Semantic analysis

« Check to ensure that the components of a program
have a meaning

- ¥ UNIVERSITY OF NICOSIA
28 NMANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou




Synthesis of Target Program

It consists of four phases (back-end)

— Intermediate Code Generator

« Explicit low-level or machine-like intermediate
representation

— Machine-Independent Code Optimizer

 Improve the intermediate code (faster, shorter code,
etc)

— Code Generator

* Translate intermediate instructions into sequence of
machine instructions

— Machine-Dependent Code Optimizer
* Improve the generated code

= UNIVERSITY OF NICOSIA
22| NANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou

10




=a" UNIVERSITY OF NICOSIA
& MMANEMIZTHMIO AEYKQZIAX Copyright (c) 2012 loanna Dionysiou

Phases of a compiler

Source Program

—

Target Program

11




The phases of a compiler

Source Program

Lexical analyzer

Lexical analyzer

— Stream of characters are read in —
and grouped into tokens

Target Program

UNIVERSITY OF NICOSIA
NMANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou

12




The phases of a compiler

Source Program

_~Syntax analyzer

Syntax analyzer
— Group tokens into grammatical —

phrases Target Program

UNIVERSITY OF NICOSIA
NMANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou

13




The phases of a compiler

Source Program

Semantic analyzer - N\

Semantic analyzer
— Checks the source program for

semantic errors and gathers type —

checking information

Target Program
« E.g.use a real number as index to array

elements

UNIVERSITY OF NICOSIA
NMANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou 14




The phases of a compiler

Source Program

Intermediate code
generator

Intermediate Code Generator

— Generate explicit intermediate
representation of the source —
program

+ E.g. Three-address code Target Program

=a" UNIVERSITY OF NICOSIA
@ TNMANEMIZTHMIO AEYKOQZIAX Copyright (c) 2012 loanna Dionysiou

15




The phases of a compiler

Source Program

MI Code optimizer

Machine-Independent Code

Optimizer 0 ot pimizr
— Attempts to improve the

intermediate code, faster Target Program
performance results

=a" UNIVERSITY OF NICOSIA
@ TNMANEMIZTHMIO AEYKOQZIAX Copyright (c) 2012 loanna Dionysiou

16




The phases of a compiler

Source Program

Code Generator
) Code generator
— Consists normally of s i
relocatable machine code or
assemb|y code —
 Machine instructions, Target Program

assignment of variables to
registers

UNIVERSITY OF NICOSIA
NMANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou

17




The phases of a compiler

Source Program

Machine-Dependent Code Optimizer i) G aiiber

— Attempts to improve the ]
generated code, faster Target Program
performance results

=a" UNIVERSITY OF NICOSIA
@ TNMANEMIZTHMIO AEYKOQZIAX Copyright (c) 2012 loanna Dionysiou 18




Lecture Outline

— An Example: Translation of a statement

- " UNIVERSITY OF NICOSIA
2| NANEMIZTHMIO AEYKOZIAZ

Copyright (c) 2012 loanna Dionysiou

19




Example: Translation of a statement

=2 UNIVERSITY OF NICOSIA
ga! MMANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou

SYMBOL TABLE position = initial + rate * 60

position

initial

rate

<id,1> <=> <id,2> <+> <id,3> <*> <60>

20




Example: Translation of a statement

<id,1> <=> <id,2> <+> <id,3> <*> <60>

<id 1> — T+

<id,2>
<id,3> 60

UNIVERSITY OF NICOSIA
s MANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou 21




Example: Translation of a statement

<id 1> — T+

/\ SYMBOL TABLE

<id.2> position | FLOAT
J

T initial | FLOAT

<id,3> 60 rate FLOAT

‘Semantc anlyzer

/\
<id,3> inttofloat
|
60

=2 UNIVERSITY OF NICOSIA
ga! MMANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou

22




Example: Translation of a statement

=a" UNIVERSITY OF NICOSIA
| TTANEMIZTHMIO AEYKOQZIAXZ Copyright (c) 2012 loanna Dionysiou

<id 1>~ T+

N

<id,2> —
<id,3> inttofloat
|
l 60

l

temp1 = inttofloat(60)
temp2 =id3 * temp1
temp3 =id2 + temp2
Id1 = temp3

23




Example: Translation of a statement

=a" UNIVERSITY OF NICOSIA
| TTANEMIZTHMIO AEYKOQZIAXZ Copyright (c) 2012 loanna Dionysiou

temp1 = inttoreal(60)
temp2 =id3 * temp1

temp3 =id2 + temp?2
Id1 = temp3

 cwecpinan

temp1 =id3 * 60.0
Id1 =1d2 + temp1

24




Example: Translation of a statement

=a" UNIVERSITY OF NICOSIA
| TTANEMIZTHMIO AEYKOQZIAXZ Copyright (c) 2012 loanna Dionysiou

temp1 =id3 * 60.0
Id1 =1d2 + temp1

l

oo

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

25




Lecture Outline

— Evolution of Programming Languages

- " UNIVERSITY OF NICOSIA
2| NANEMIZTHMIO AEYKOZIAZ

Copyright (c) 2012 loanna Dionysiou

26




First Computers

Appeared in 1940’ s

Programmed in machine language
—0'sand 1's

Low-level operations

— Move data, add contents of registers

Programming problems
— Slow, tedious, error prone
— Very hard to understand and modify

= r UNIVERSITY OF NICOSIA
s [TANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou

27




Move to Higher-level languages

Early 50" s

— Assembly languages
Mid-late 50" s

— Fortran, Cobol, Lisp

Today
— Thousands of programming languages

— Various classifications
« Generation
* Imperative vs. declarative
* Object oriented
« Scripting

= " UNIVERSITY OF NICOSIA
22| NANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou

28




More on Higher-Level Languages

Generation

— 1st : machine languages

— 2nd : assembly languages

— 3rd : higher-level languages (Cobol, C, C++, Java)
— 4th : application-specific languages (SQL)

— 5th :logic-based languages (Prolog)

Imperative vs. Declarative

— How a computation is done: C, C++, Java

— What computation is to be done: Prolog

Object-Oriented
— Java, C#

Scripting
— JavaScript, PHP

=AF UNIVERSITY OF NICOSIA
sl MANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou 2




Lecture Outline

— Building a Compiler and Applications of Compiler
Technology

= UNIVERSITY OF NICOSIA
2 NANEMIZTHMIO AEYKOZIAX Copyright (c) 2012 loanna Dionysiou




Building a Compiler

Compiler development is challenging
— A compiler must accept ALL source programs that
conform to the language specification
« Set of source programs -> Infinite!
 Millions of lines of code

— An transformation performed by the compiler must
preserve the meaning of the source program

=a" UNIVERSITY OF NICOSIA
s MANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou <




Modeling in Compiler Design

Study of compilers

— How do we design the right mathematical
models?

— How do we choose the right algorithms?

Fundamental models
— Finite-state machines
— Regular expressions

— Context-free grammars
— Trees

=a" UNIVERSITY OF NICOSIA
s MANEMIZTHMIO AEYKOZIAZ Copyright (c) 2012 loanna Dionysiou iz




Compiler-Construction Tools

=a" UNIVERSITY OF NICOSIA
s=a| MANEMIZTHMIO AEYKOQZIAX Copyright (c) 2012 loanna Dionysiou

Luckily, there are tools available
— Parser generators

— Scanner generators

— Syntax-directed translation engines
— Code-generator generators

— Data-flow analysis engines

— Compiler-construction toolkits

33




Science of Code Optimization

Optimization

— Attempts that a compiler makes to produce more
efficient code

Compiler Optimizations must meet the
following design objectives

— Optimization must be correct

— Optimization must improve the performance of
many programs

— Compilation time must be kept reasonable
— Engineering effort required must be manageable

UNIVERSITY OF NICOSIA
NMANEMIZTHMIO AEYKOQZIAZ Copyright (c) 2012 loanna Dionysiou

34




More on Optimization

Correct optimization
— Generate fast code that is correct!!!

Improve performance

— Normally means reducing speed of program execution

— Minimizing size of generated code (embedded applications)
— Minimizing power consumption (mobile devices)

Short compilation time

— To support rapid development and debugging cycle

Keep it simple

— Compiler is a complex system - Keep system simple so that

engineering and maintenance costs of the compiler are
manageable

 Prioritize optimizations, implement those that lead to greatest
benefits

=a" UNIVERSITY OF NICOSIA
sa. [MANEMIZTHMIO AEYKQZIAX Copyright (c) 2012 loanna Dionysiou 35




Compiler Technology Apps.

Optimizations for Computer Architectures

— Parallelism at the instruction level and processor
level
« Compiler techniques are developed to generate code

automatically for such machines from sequential
programs

= UNIVERSITY OF NICOSIA
2 NANEMIZTHMIO AEYKOZIAX Copyright (c) 2012 loanna Dionysiou

36




