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Administrative 
!  Next time reading assignment 

–  [ALSU07] Chapters 1,2 
•  [ALSU07] Sections 1.1 - 1.5 (cover in class) 

•  [ALSU07] Section 1.6 (read on your own) 
–  Programming language basics that you should be familiar  

–  Email me questions (if any) before next class 

•  [ALSU07] We will cover selected parts from all sections 
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Lecture Outline 
!  Chapter 1 - Introduction 

– Definition 

– Structure of Compiler 
•  Compilation parts 

–  Analysis, Synthesis 

•  Phases of a compiler 

– An Example: Translation of a statement 

– Evolution of Programming Languages 

– Building a Compiler and Applications of Compiler 
Technology 
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Compiler: Simple Definition 
!  A compiler is a program that reads a program 

written in one language and translates it into 
an equivalent program in another language 

Compiler source 
program 

target 
program 

error 
messages 

Target  
Program 

input output 
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The context of a compiler 
!  In addition to a compiler, several other 

programs may be required to create an 
executable target program 
– Preprocessor 

– Assembler  

– Linker/Loader 

These are the cousins of the compilers!  
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Cousins of the compiler 
!  Preprocessors 

– Macro processing 
– File inclusion  

!  Assemblers 
– Some compilers produce assembly code that is 

passed to an assembler for further processing 
– The assembler then produces machine code 

!  Linker/loader 
– Applies to large programs in multiple files 
– Linker resolves the address (location) of variables 
– Loader combines all the pieces into an executable 



Copyright (c)  2012 Ioanna Dionysiou 7 

Lecture Outline 
!  Chapter 1 - Introduction 
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– Structure of Compiler 
•  Compilation parts 

–  Analysis, Synthesis 

•  Phases of a compiler 

– An Example: Translation of a statement 

– Evolution of Programming Languages 

– Building a Compiler and Applications of Compiler 
Technology 
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Compilation Process 
!  There are two parts to compilation 

– Analysis 
•  Break up the source program into pieces  

•  Create an intermediate representation of the source 
program 

– Synthesis 
•  Construct the desired target program from the 

intermediate representation  

Compiler source 
program 

target 
program 



Copyright (c)  2012 Ioanna Dionysiou 9 

Analysis of Source Program 
!  It consists of three phases (front-end) 

– Lexical analysis 
•  Linear analysis, scanning 

•  Stream of characters are read and grouped into tokens 
(sequence of characters with a collective meaning) 

– Syntax analysis 
•  Hierarchical analysis, parsing 

•  Tokens are grouped hierarchically into nested 
collections with collective meaning 

– Semantic analysis 
•  Check to ensure that the components of a program 

have a meaning 
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Synthesis of Target Program 
!  It consists of four phases (back-end) 

–  Intermediate Code Generator 
•  Explicit low-level or machine-like intermediate 

representation 

– Machine-Independent Code Optimizer 
•  Improve the intermediate code (faster, shorter code, 

etc) 

– Code Generator 
•  Translate intermediate instructions into sequence of 

machine instructions  

– Machine-Dependent Code Optimizer 
•  Improve the generated code 



Copyright (c)  2012 Ioanna Dionysiou 11 

Phases of a compiler 
Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  
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The phases of a compiler 

 
!   Lexical analyzer 

–  Stream of characters are read in 
and grouped into tokens 

Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  
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The phases of a compiler 

 

!   Syntax analyzer 
–  Group tokens into grammatical 

phrases 

Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  
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The phases of a compiler 

 

!   Semantic analyzer 
–  Checks the source program for  

 semantic errors and gathers type  

 checking information  
•  E.g.use a real number as index to array 

elements 

Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  
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The phases of a compiler 

!   Intermediate Code Generator 
–  Generate explicit intermediate 

representation of the source 
program 

•  E.g. Three-address code 

Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  
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The phases of a compiler 

!   Machine-Independent Code 
Optimizer 

–  Attempts to improve the 
intermediate code, faster 
performance results 

Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  



Copyright (c)  2012 Ioanna Dionysiou 17 

The phases of a compiler 

!   Code Generator 

–  Consists normally of 
relocatable machine code or 
assembly code 

•  Machine instructions, 
assignment of variables to 
registers 

Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  
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The phases of a compiler 

!   Machine-Dependent Code Optimizer 

–  Attempts to improve the 
generated code, faster 
performance results 

Source Program 

Lexical analyzer  

Syntax analyzer  

Semantic analyzer  

Intermediate code 
generator 

MI Code optimizer  

Code generator  

Error Handler Symbol-table 
manager  

Target Program 

MD Code optimizer  
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Example: Translation of a statement 

position = initial + rate * 60 

Lexical analyzer 

<id,1> <=> <id,2> <+> <id,3> <*> <60> 

position 

initial 

rate 

… 

SYMBOL TABLE 
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Example: Translation of a statement 

Syntax analyzer 

<id,1> 

60 

* 

+ 

= 

<id,1> <=> <id,2> <+> <id,3> <*> <60> 

<id,2> 

<id,3> 
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Example: Translation of a statement 

Semantic analyzer 

<id,1> 

60 

* 

+ 

= 

<id,2> 

<id,3> 

<id,1> 

   inttofloat 
          |   
         60 

* 

+ 

= 

<id,2> 

<id,3> 

position FLOAT 

initial FLOAT 

rate FLOAT 

… 

SYMBOL TABLE 
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Example: Translation of a statement 

Intermediate Code Generator 

temp1 = inttofloat(60) 
temp2 = id3 * temp1 
temp3 = id2 + temp2 
id1 = temp3 

<id,1> 

   inttofloat 
          |   
         60 

* 

+ 

= 

<id,2> 

<id,3> 
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Example: Translation of a statement 

Code Optimizer 

temp1 = id3 * 60.0 
id1 = id2 + temp1 

temp1 = inttoreal(60) 
temp2 = id3 * temp1 
temp3 = id2 + temp2 
id1 = temp3 
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Example: Translation of a statement 

Code Generator 

MOVF id3, R2 
MULF #60.0, R2 
MOVF id2, R1 
ADDF R2, R1 
MOVF R1, id1 

temp1 = id3 * 60.0 
id1 = id2 + temp1 
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First Computers 
!  Appeared in 1940’s 

!  Programmed in machine language 
– 0’s and 1’s 

!  Low-level operations 
– Move data, add contents of registers 

!  Programming problems 
– Slow, tedious, error prone 

– Very hard to understand and modify 
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Move to Higher-level languages 
!  Early 50’s 

– Assembly languages 

!  Mid-late 50’s 
– Fortran, Cobol, Lisp 

!  Today 
– Thousands of programming languages 

– Various classifications 
•  Generation 

•  Imperative vs. declarative 

•  Object oriented 

•  Scripting  



Copyright (c)  2012 Ioanna Dionysiou 29 

More on Higher-Level Languages 
!  Generation 

–  1st  : machine languages  
–  2nd : assembly languages 
–  3rd  : higher-level languages (Cobol, C, C++, Java) 
–  4th   : application-specific languages (SQL) 
–  5th   : logic-based languages (Prolog) 

!   Imperative vs. Declarative 
–  How a computation is done: C, C++, Java 
–  What computation is to be done: Prolog 

!  Object-Oriented 
–  Java, C# 

!  Scripting 
–  JavaScript, PHP 
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Building a Compiler 
!  Compiler development is challenging 

– A compiler must accept ALL source programs that 
conform to the language specification 

•  Set of source programs -> Infinite! 

•  Millions of lines of code 

– An transformation performed by the compiler must 
preserve the meaning of the source program  
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Modeling in Compiler Design 
!  Study of compilers 

– How do we design the right mathematical 
models? 

– How do we choose the right algorithms? 

!   Fundamental models 
– Finite-state machines 

– Regular expressions 

– Context-free grammars 

– Trees  
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Compiler-Construction Tools 
!  Luckily, there are tools available 

– Parser generators 

– Scanner generators 

– Syntax-directed translation engines 

– Code-generator generators 

– Data-flow analysis engines 

– Compiler-construction toolkits 
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Science of Code Optimization 
!  Optimization 

– Attempts that a compiler makes to produce more 
efficient code 

!  Compiler Optimizations must meet the 
following design objectives 
– Optimization must be correct 

– Optimization must improve the performance of 
many programs 

– Compilation time must be kept reasonable 

– Engineering effort required must be manageable  
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More on Optimization 
!  Correct optimization 

–  Generate fast code that is correct!!! 

!   Improve performance 
–  Normally means reducing speed of program execution 
–  Minimizing size of generated code (embedded applications) 
–  Minimizing power consumption (mobile devices) 

!  Short compilation time 
–  To support rapid development and debugging cycle 

!  Keep it simple 
–  Compiler is a complex system - Keep system simple so that 

engineering and maintenance costs of the compiler are 
manageable 

•  Prioritize optimizations, implement those that lead to greatest 
benefits 
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Compiler Technology Apps. 
!  Optimizations for Computer Architectures 

– Parallelism at the instruction level and processor 
level 

•  Compiler techniques are developed to generate code 
automatically for such machines from sequential 
programs 


