
COMP-421 Compiler Design

Presented by

Dr Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou 2

Administrative
!  Next time reading assignment

–  [ALSU07] Chapters 1,2
•  [ALSU07] Sections 1.1 - 1.5 (cover in class)

•  [ALSU07] Section 1.6 (read on your own)
–  Programming language basics that you should be familiar

–  Email me questions (if any) before next class

•  [ALSU07] We will cover selected parts from all sections

Copyright (c) 2012 Ioanna Dionysiou 3

Lecture Outline
!  Chapter 1 - Introduction

– Definition

– Structure of Compiler
•  Compilation parts

–  Analysis, Synthesis

•  Phases of a compiler

– An Example: Translation of a statement

– Evolution of Programming Languages

– Building a Compiler and Applications of Compiler
Technology

Copyright (c) 2012 Ioanna Dionysiou 4

Compiler: Simple Definition
!  A compiler is a program that reads a program

written in one language and translates it into
an equivalent program in another language

Compiler source
program

target
program

error
messages

Target
Program

input output

Copyright (c) 2012 Ioanna Dionysiou 5

The context of a compiler
!  In addition to a compiler, several other

programs may be required to create an
executable target program
– Preprocessor

– Assembler

– Linker/Loader

These are the cousins of the compilers!

Copyright (c) 2012 Ioanna Dionysiou 6

Cousins of the compiler
!  Preprocessors

– Macro processing
– File inclusion

!  Assemblers
– Some compilers produce assembly code that is

passed to an assembler for further processing
– The assembler then produces machine code

!  Linker/loader
– Applies to large programs in multiple files
– Linker resolves the address (location) of variables
– Loader combines all the pieces into an executable

Copyright (c) 2012 Ioanna Dionysiou 7

Lecture Outline
!  Chapter 1 - Introduction

– Definition

– Structure of Compiler
•  Compilation parts

–  Analysis, Synthesis

•  Phases of a compiler

– An Example: Translation of a statement

– Evolution of Programming Languages

– Building a Compiler and Applications of Compiler
Technology

Copyright (c) 2012 Ioanna Dionysiou 8

Compilation Process
!  There are two parts to compilation

– Analysis
•  Break up the source program into pieces

•  Create an intermediate representation of the source
program

– Synthesis
•  Construct the desired target program from the

intermediate representation

Compiler source
program

target
program

Copyright (c) 2012 Ioanna Dionysiou 9

Analysis of Source Program
!  It consists of three phases (front-end)

– Lexical analysis
•  Linear analysis, scanning

•  Stream of characters are read and grouped into tokens
(sequence of characters with a collective meaning)

– Syntax analysis
•  Hierarchical analysis, parsing

•  Tokens are grouped hierarchically into nested
collections with collective meaning

– Semantic analysis
•  Check to ensure that the components of a program

have a meaning

Copyright (c) 2012 Ioanna Dionysiou 10

Synthesis of Target Program
!  It consists of four phases (back-end)

–  Intermediate Code Generator
•  Explicit low-level or machine-like intermediate

representation

– Machine-Independent Code Optimizer
•  Improve the intermediate code (faster, shorter code,

etc)

– Code Generator
•  Translate intermediate instructions into sequence of

machine instructions

– Machine-Dependent Code Optimizer
•  Improve the generated code

Copyright (c) 2012 Ioanna Dionysiou 11

Phases of a compiler
Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 12

The phases of a compiler

!   Lexical analyzer

–  Stream of characters are read in
and grouped into tokens

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 13

The phases of a compiler

!   Syntax analyzer
–  Group tokens into grammatical

phrases

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 14

The phases of a compiler

!   Semantic analyzer
–  Checks the source program for

 semantic errors and gathers type

 checking information
•  E.g.use a real number as index to array

elements

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 15

The phases of a compiler

!   Intermediate Code Generator
–  Generate explicit intermediate

representation of the source
program

•  E.g. Three-address code

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 16

The phases of a compiler

!   Machine-Independent Code
Optimizer

–  Attempts to improve the
intermediate code, faster
performance results

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 17

The phases of a compiler

!   Code Generator

–  Consists normally of
relocatable machine code or
assembly code

•  Machine instructions,
assignment of variables to
registers

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 18

The phases of a compiler

!   Machine-Dependent Code Optimizer

–  Attempts to improve the
generated code, faster
performance results

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

MI Code optimizer

Code generator

Error Handler Symbol-table
manager

Target Program

MD Code optimizer

Copyright (c) 2012 Ioanna Dionysiou 19

Lecture Outline
!  Chapter 1 - Introduction

– Definition

– Structure of Compiler
•  Compilation parts

–  Analysis, Synthesis

•  Phases of a compiler

– An Example: Translation of a statement

– Evolution of Programming Languages

– Building a Compiler and Applications of Compiler
Technology

Copyright (c) 2012 Ioanna Dionysiou 20

Example: Translation of a statement

position = initial + rate * 60

Lexical analyzer

<id,1> <=> <id,2> <+> <id,3> <*> <60>

position

initial

rate

…

SYMBOL TABLE

Copyright (c) 2012 Ioanna Dionysiou 21

Example: Translation of a statement

Syntax analyzer

<id,1>

60

*

+

=

<id,1> <=> <id,2> <+> <id,3> <*> <60>

<id,2>

<id,3>

Copyright (c) 2012 Ioanna Dionysiou 22

Example: Translation of a statement

Semantic analyzer

<id,1>

60

*

+

=

<id,2>

<id,3>

<id,1>

 inttofloat
 |
 60

*

+

=

<id,2>

<id,3>

position FLOAT

initial FLOAT

rate FLOAT

…

SYMBOL TABLE

Copyright (c) 2012 Ioanna Dionysiou 23

Example: Translation of a statement

Intermediate Code Generator

temp1 = inttofloat(60)
temp2 = id3 * temp1
temp3 = id2 + temp2
id1 = temp3

<id,1>

 inttofloat
 |
 60

*

+

=

<id,2>

<id,3>

Copyright (c) 2012 Ioanna Dionysiou 24

Example: Translation of a statement

Code Optimizer

temp1 = id3 * 60.0
id1 = id2 + temp1

temp1 = inttoreal(60)
temp2 = id3 * temp1
temp3 = id2 + temp2
id1 = temp3

Copyright (c) 2012 Ioanna Dionysiou 25

Example: Translation of a statement

Code Generator

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

temp1 = id3 * 60.0
id1 = id2 + temp1

Copyright (c) 2012 Ioanna Dionysiou 26

Lecture Outline
!  Chapter 1 - Introduction

– Definition

– Structure of Compiler
•  Compilation parts

–  Analysis, Synthesis

•  Phases of a compiler

– An Example: Translation of a statement

– Evolution of Programming Languages

– Building a Compiler and Applications of Compiler
Technology

Copyright (c) 2012 Ioanna Dionysiou 27

First Computers
!  Appeared in 1940’s

!  Programmed in machine language
– 0’s and 1’s

!  Low-level operations
– Move data, add contents of registers

!  Programming problems
– Slow, tedious, error prone

– Very hard to understand and modify

Copyright (c) 2012 Ioanna Dionysiou 28

Move to Higher-level languages
!  Early 50’s

– Assembly languages

!  Mid-late 50’s
– Fortran, Cobol, Lisp

!  Today
– Thousands of programming languages

– Various classifications
•  Generation

•  Imperative vs. declarative

•  Object oriented

•  Scripting

Copyright (c) 2012 Ioanna Dionysiou 29

More on Higher-Level Languages
!  Generation

–  1st : machine languages
–  2nd : assembly languages
–  3rd : higher-level languages (Cobol, C, C++, Java)
–  4th : application-specific languages (SQL)
–  5th : logic-based languages (Prolog)

!   Imperative vs. Declarative
–  How a computation is done: C, C++, Java
–  What computation is to be done: Prolog

!  Object-Oriented
–  Java, C#

!  Scripting
–  JavaScript, PHP

Copyright (c) 2012 Ioanna Dionysiou 30

Lecture Outline
!  Chapter 1 - Introduction

– Definition

– Structure of Compiler
•  Compilation parts

–  Analysis, Synthesis

•  Phases of a compiler

– An Example: Translation of a statement

– Evolution of Programming Languages

– Building a Compiler and Applications of Compiler
Technology

Copyright (c) 2012 Ioanna Dionysiou 31

Building a Compiler
!  Compiler development is challenging

– A compiler must accept ALL source programs that
conform to the language specification

•  Set of source programs -> Infinite!

•  Millions of lines of code

– An transformation performed by the compiler must
preserve the meaning of the source program

Copyright (c) 2012 Ioanna Dionysiou 32

Modeling in Compiler Design
!  Study of compilers

– How do we design the right mathematical
models?

– How do we choose the right algorithms?

!   Fundamental models
– Finite-state machines

– Regular expressions

– Context-free grammars

– Trees

Copyright (c) 2012 Ioanna Dionysiou 33

Compiler-Construction Tools
!  Luckily, there are tools available

– Parser generators

– Scanner generators

– Syntax-directed translation engines

– Code-generator generators

– Data-flow analysis engines

– Compiler-construction toolkits

Copyright (c) 2012 Ioanna Dionysiou 34

Science of Code Optimization
!  Optimization

– Attempts that a compiler makes to produce more
efficient code

!  Compiler Optimizations must meet the
following design objectives
– Optimization must be correct

– Optimization must improve the performance of
many programs

– Compilation time must be kept reasonable

– Engineering effort required must be manageable

Copyright (c) 2012 Ioanna Dionysiou 35

More on Optimization
!  Correct optimization

–  Generate fast code that is correct!!!

!   Improve performance
–  Normally means reducing speed of program execution
–  Minimizing size of generated code (embedded applications)
–  Minimizing power consumption (mobile devices)

!  Short compilation time
–  To support rapid development and debugging cycle

!  Keep it simple
–  Compiler is a complex system - Keep system simple so that

engineering and maintenance costs of the compiler are
manageable

•  Prioritize optimizations, implement those that lead to greatest
benefits

Copyright (c) 2012 Ioanna Dionysiou 36

Compiler Technology Apps.
!  Optimizations for Computer Architectures

– Parallelism at the instruction level and processor
level

•  Compiler techniques are developed to generate code
automatically for such machines from sequential
programs

