
COMP-421 Compiler Design

Presented by

Dr Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou

Lecture Outline
!  Introduction to yacc

Copyright (c) 2012 Ioanna Dionysiou

Introduction to YACC
!  Yet Another Compiler-compiler

–  It is a tool for building syntax analyzers

!  Yacc takes a grammar (series of rules) that
you specify and writes a parser that
recognizes valid strings in that grammar
– Non-recursive rules

•  statement → NAME = expression

•  expression → NUMBER + NUMBER

•  S → 0 S | 1

Copyright (c) 2012 Ioanna Dionysiou

Yacc
!  LR parser

– Shift/reduce parsing
•  When yacc reduces a rule, it executes user-code

associated with it

– What cannot be parsed
•  Ambiguous grammar

•  Lookahead symbol > 1
–  (if-the-else situation , need to left factor the grammar)

Copyright (c) 2012 Ioanna Dionysiou

!  A yacc specification consists of three sections
–  Definition section

–  Rules section

–  User subroutines section

!  The parts are separated by lines consisting of %%

!  The first two parts are required, although a part may
be empty

!  The third part and the preceding %% may be
omitted

Yacc specification sections

Copyright (c) 2012 Ioanna Dionysiou

Definition Section
!  It includes declarations

– %token

– %type

– %left

– %right

– %start

– %union

– %nonassoc

Copyright (c) 2012 Ioanna Dionysiou

Symbols
!  A grammar is constructed from symbols which are

strings of letters, digits, _
–  Every symbol has a value

•  Error is reserved for error recovery

–  It gives additional information about a particular instance
of a symbol

•  Token is a number ==> value would be a particular number
•  Token is a literal string ==> value would be a pointer to a copy of

the string
•  Token is variable ==> value would be a pointer to a symbol table

entry describing the variable

Copyright (c) 2012 Ioanna Dionysiou

Symbols and tokens
!  Symbols produced by the lexer are called

tokens
– These are the ones that the lexer passes to the

parser

– When a yacc parser needs another token, it calls
yylex() which returns the next token from the input

Copyright (c) 2012 Ioanna Dionysiou

Tokens and %token
!   All tokens must be defined in the declaration sections

!   You can also user single quoted characters as tokens without
declaring them
–  ‘+’ ‘=‘, etc

%token NAME NUMBER

Copyright (c) 2012 Ioanna Dionysiou

Tokens, %union and %type
!  The %union declaration identifies all of the

possible C types that a symbol value can
have

!  The field declarations are copied into a C
union declaration of the type YYSTYPE in the
output file
–  In the absence of a %union declaration, yacc

defines YYSTYPE to be int, so all of the symbol
values are integers

– You associate the types declared in the %union
with particular symbols using the %type
declaration

Copyright (c) 2012 Ioanna Dionysiou

%union and %type

%union {
 double dval;
 char *sval;
}

%token <dval> NUMBER
%token <sval> NAME

Copyright (c) 2012 Ioanna Dionysiou

Precedence Specification
!  Yacc lets you specify precedence explicitly

–  Operators are declared in increasing order of precedence
–  Operators on the same line are the same precedence

level

%left ‘+’ ‘-’
%left ‘*’ ‘/’
%right POW
%nonassoc UMINUS

Copyright (c) 2012 Ioanna Dionysiou

%start
!  Normally, the start rule is the one named in the first

rule.
!   If you want to start with some other rule, you can

write

!   In most cases, the clearest way to present the

grammar is top-down, with the start rule first
–  No %start needed

%start rulename

Copyright (c) 2012 Ioanna Dionysiou

Rules Section
!  It includes

– Rules

– Actions

!  Whenever a parser reduces a rule, it executes
user C code associated with the rule, known
as rule’s action.

Copyright (c) 2012 Ioanna Dionysiou

!  ASCII keyboards don’t have a → key
– we use a colon : between the left-hand and right-

hand sides of a rule

– We put a semicolon ; at the end of each rule

– Unlike lexx, yacc pays no attention to line
boundaries in the rules section

%%
statement : NAME ‘=‘ expression
 | expression
 ;

Rule Format

Copyright (c) 2012 Ioanna Dionysiou

Action
!  The action appears in braces after the end of

the rule, before the ; or the |
– Action code can refer to the values of the right-

hand side symbols as $1, $2, …

– Action code can set value of the left-hand side
symbol by setting $$

Copyright (c) 2012 Ioanna Dionysiou

Action

%%
statement : NAME ‘=‘ expression
 | expression {printf(“value is %d\n”,$1);}
 ;

expression : expression ‘+’ NUMBER {$$ = $1 + $3;}

 | expression ‘-’ NUMBER {$$ = $1 - $3;}
 | NUMBER {$$ = $1;}

 ;

Copyright (c) 2012 Ioanna Dionysiou

Lex Example

Copyright (c) 2012 Ioanna Dionysiou

Yacc Example

Copyright (c) 2012 Ioanna Dionysiou

Yacc Example

%left ‘+’ ‘-’
%left ‘*’ ‘/’

Add expr ‘*’ expr
Add expr ‘/’ expr

