
COMP-421 Compiler Design

Presented by

Dr Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou

Lecture Outline
!  Bottom-up Parsing

– Handles, reductions and shift-reduce parsing

– LR parsers and LR parsing algorithm

Copyright (c) 2012 Ioanna Dionysiou

Bottom-Up Parsing
!  Bottom-up parsing

– Shift-reduce parsing
•  Attempts to construct a parse tree for an input string

beginning at the leaves and working up towards the
root

– Reducing a string w to the start symbol of a grammar
»  Substring that matches the right side of a production is

replaced by the symbol on the left of that production

– Consider string id + id and production E’ id
» Reduced to id + E’

•  Methods
–  LR parsing (used in a number of automatic parser generators)

Bottom-Up Parsing

Copyright (c) 2012 Ioanna Dionysiou

E E + T | T
T T * F | F
F (E) | id

id * id F * id

id

 T * id

F

id

 T * F

F

id

id T * F

F

id

id

 T

 T * F

F

id

id

 T

 E

Copyright (c) 2012 Ioanna Dionysiou

S " aABe
A " Abc | b
B " d

Consider sentence abbcde and grammar

Scan sentence looking for a substring that matches the right
side of some production

 abbcde replace b by A using A " b
 aAbcde replace Abc by A using A " Abc
 aAde replace d by B using B " d
 aABe replace aABe by S using S " aABe
 S

⇒
rm

⇒
rm

⇒
rm

⇒
rm

S aABe aAde aAbcde abbcde

Reduction and rightmost derivation

Reduction and rightmost derivation

Copyright (c) 2012 Ioanna Dionysiou

E E + T | T
T T * F | F
F (E) | id

id * id F * id

id

 T * id

F

id

 T * F

F

id

id T * F

F

id

id

 T

 T * F

F

id

id

 T

 E

⇒
rm

⇒
rm

⇒
rm

E T T * F T * id F * id id * id ⇒
rm

⇒
rm

Copyright (c) 2012 Ioanna Dionysiou

Handles
!  Informally,

– Handle of a string is a substring that
•  matches the right side of a production AND

•  whose reduction to the nonterminal on the left side of
the production represents one step along the reverse of
a rightmost derivation

– However, we need to choose the appropriate
handle

 abbcde
 aAbcde
 aAAcde cannot be reduced to S

Copyright (c) 2012 Ioanna Dionysiou

Handles
!  Formally

–  A handle of a right-sentential form γ is a production A →β
and a position of γ where the string β may be found and
replaced by A to produce the previous right-sentential
form in a rightmost derivation of γ

⇒
rm

⇒
rm

 S αAw αβw

A →β in the position following α is a
handle of αβw

Copyright (c) 2012 Ioanna Dionysiou

Shift-Reduce Parsing
!  If we want to parse by handle pruning

(rightmost derivation in reverse) we need to
solve 2 problems
– Locate the substring to be reduced in a right-

sentential form

– Determine what production to use in case there
are multiple productions with that substring on the
right side

•  LR parsing

Copyright (c) 2012 Ioanna Dionysiou

Shift-Reduce Parsing
!   Use a stack to hold

–  Grammar symbols

!   Use an input buffer to hold
–  String w to be parsed

!   Use $ to indicate
–  the bottom of stack
–  The right end of the input

!   Basic Idea
–  Parser shifts

•  zero or more input symbols onto stack until a handle is on top of the
stack

–  Parser reduces
•  the handle to the left side of the appropriate production

–  Parser repeats this cycle
•  until it has detected an error or
•  until stack contains start symbol and input is empty

Copyright (c) 2012 Ioanna Dionysiou

Shift-Reduce Parsing
!  There are 4 possible actions a shift-reduce parser

can make
–  Shift

•  The next input symbol is shifted onto the top of the stack

–  Reduce
•  Parser knows the right end of the handle is at the top of the stack
•  Locates the left end of the handle within the stack and decide

which nonterminal to replace the handle

–  Accept
•  Parser announces successful completion of parsing

–  Error
•  Syntax error has occurred

Copyright (c) 2012 Ioanna Dionysiou

Shift-Reduce Parsing

E " E + E
E " E * E
E " (E)
E " id

id + id * id

WARNING! Grammar has 2 rightmost derivations
(because grammar is ambiguous), so there are 2

sequences of steps that the shift-reduce parser might
take.

Grammar G Input w

Copyright (c) 2012 Ioanna Dionysiou

Shift-Reduce Parsing

E " E + E
E " E * E
E " (E)
E " id

id + id * id

Grammar G Input w

Copyright (c) 2012 Ioanna Dionysiou

Shift-Reduce Parsing

E " E + E
E " E * E
E " (E)
E " id

id + id * id

Grammar G Input w

Continue the process….

Copyright (c) 2012 Ioanna Dionysiou

Shift-Reduce Parsing

E " E + E
E " E * E
E " (E)
E " id

id + id * id

Grammar G Input w

Copyright (c) 2012 Ioanna Dionysiou

Conflicts during shift-reduce parsing

!  There are context-free grammars for which
shift-reduce parsing cannot be used
– Parser cannot decide whether to shift or reduce

•  shift/reduce conflict

– Parser cannot decide which of several reductions
to make

•  reduce/reduce conflict

– These grammars are not in LR(k) class of
grammars (non-LR grammars)

Copyright (c) 2012 Ioanna Dionysiou

Viable Prefixes
!  Viable prefixes Definition

– Set of prefixes that can appear on the stack of a
shift-reduce parser

– Prefix of a right-sententail form that does not
continue past the right end of the rightmost handle
of that sentential form

!  Will use these when constructing parsing
tables for LR parsers

Copyright (c) 2012 Ioanna Dionysiou

LR Parsers
!  LR(k)

–  L
•  left-to-right scanning of inputs

–  R
•  rightmost derivation in reverse

–  K
•  number of input symbols of lookahead that are used to make

parsing decisions
–  LR == LR(1)

!  Yacc is an LR parser generator
!  LR Parsing Algorithm (regardless table technique)

–  3 techniques to construct an LR parsing table
•  SLR, Canonical LR, LALR

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Algorithm

LR Parsing
Program

Parsing Table M
action goto

a1…ai an $
Sm
Xm

Sm-1
Xm-1
……..

S0

OUTPUT

INPUT

STACK

S - state
X - grammar symbol

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Algorithm
!  The LR Parsing Program determines the next

move of the parser by considering
– ai, the current input symbol

– Sm, the current state on top of the stack

– Consulting action[sm, ai] which may contain one of
the following values

•  Shift

•  Reduce

•  Accept

•  error

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing
!  A configuration of an LR parser is a pair

(stack contents, unexpended input)

(s0 X1 s1 X2 s2 …Xm sm , ai ai+1 … an$)

 X1X2…Xmai ai+1 … an

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing - shift
!  If action[sm, ai] = shift s then

(stack contents, unexpended input)

(s0 X1 s1 X2 s2 …Xm sm , ai ai+1 … an$)

(s0 X1 s1 X2 s2 …Xm sm ai s, ai+1 … an$)

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing - reduce
!   If action[sm, ai] = reduce A→β then

(stack contents, unexpended input)

(s0 X1 s1 X2 s2 …Xm sm , ai ai+1 … an$)

(s0 X1 s1 X2 s2 …Xm-r sm-r A s, ai ai+1 … an$)

s = goto[sm-r,A] and r is the length of β (the right side of the

production)
Parser pops 2r symbols off the stack
 (r states + r symbols) to reach state sm-r

Parser pushes both A and s onto the stack

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Algorithm

Input : A string w and a LR parsing table with functions action and
goto for grammar G

Output: If w is in L(G), a bottom-up parse of w; otherwise an error

Method: Initially the parser is in a configuration in which it has:
 s0 on the stack, with s0 is the initial state

 w$ in the input buffer
 The algorithm that utilizes the LR parsing table to
 produce a parse for an input is shown on the next slide

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Algorithm

set ip to point to the first symbol of w$
repeat
 BEGIN

 let s be the state on top of the stack and a the symbol pointed to by ip
 if action[s,a] = shift s’ then
 push a then s’ on top of the stack
 advance ip to the next input symbol
 else if action[s,a] = reduce A →β then
 pop 2 * |β| symbols off the stack
 let s’ be the new state now on the top of the stack
 push A, then goto[s’,A] onto the stack
 output the production A →β
 else if action[s,a] = accept then
 return
 else
 error()
END

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Algorithm
!  [ALSU07], page 251-253

– Slightly different presentation of the algorithm

–  Idea still the same!

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Example

(1) E " E + T
(2) E " T
(3) T " T * F
(4) T " F
(5) F " (E)
(6) F " id

GRAMMAR G

id * id + id

INPUT string w

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Example
!   Before we examine the workings of the algorithm, try to

derive the rightmost derivation for the input string id*id+id

id * id + id

(1) E " E + T
(2) E " T
(3) T " T * F
(4) T " F
(5) F " (E)
(6) F " id

Copyright (c) 2012 Ioanna Dionysiou

LR Parsing Example
Rightmost derivation

E E+T E+F E+id T+id T*F+id T*id+id F*id+id id*id+id ⇒
rm

⇒
rm

⇒
rm

⇒
rm

⇒
rm

⇒
rm

⇒
rm

⇒
rm

Copyright (c) 2012 Ioanna Dionysiou

Parsing Table for Grammar G

action goto STATE
id + * () $ E T F

0 S5 S4 1 2 3
1 S6 Acc
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 R6 R6
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11
9 R1 S7 R1 R1

10 R3 R3 R3 R3
11 R5 R5 R5 R5

[ALSU07], page 252

Si means shift and stack state i

Rj means reduce by production
numbered j

Acc means accept

Blank means error

Copyright (c) 2012 Ioanna Dionysiou

Moves Made LR Parser

STACK INPUT ACTION

0 id * id + i d $ shift

(1) E " E + T
(2) E " T
(3) T " T * F
(4) T " F
(5) F " (E)
(6) F " id

action goto STATE
id + * () $ E T F

0 S5 S4 1 2 3
1 S6 Acc
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 R6 R6
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11
9 R1 S7 R1 R1

10 R3 R3 R3 R3
11 R5 R5 R5 R5

Copyright (c) 2012 Ioanna Dionysiou

Moves Made LR Parser

STACK INPUT ACTION

0 id * id + i d $ shift
0 id 5 * id + i d $ reduce by F→ id

(1) E " E + T
(2) E " T
(3) T " T * F
(4) T " F
(5) F " (E)
(6) F " id

action goto STATE
id + * () $ E T F

0 S5 S4 1 2 3
1 S6 Acc
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 R6 R6
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11
9 R1 S7 R1 R1

10 R3 R3 R3 R3
11 R5 R5 R5 R5

Copyright (c) 2012 Ioanna Dionysiou

Moves Made LR Parser

STACK INPUT ACTION

0 id * id + id $ shift
0 id 5 * id + id $ reduce by F →id
0 F 3 * id + id $ reduce by T →F

(1) E " E + T
(2) E " T
(3) T " T * F
(4) T " F
(5) F " (E)
(6) F " id

action goto STATE
id + * () $ E T F

0 S5 S4 1 2 3
1 S6 Acc
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 R6 R6
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11
9 R1 S7 R1 R1

10 R3 R3 R3 R3
11 R5 R5 R5 R5

Copyright (c) 2012 Ioanna Dionysiou

Moves Made LR Parser

STACK INPUT ACTION

0 id * id + i d $ shift
0 id 5 * id + i d $ reduce by F→ id
0 F 3 * id + id $ reduce by T→F
0 T 2 * id + id $ shift
0 T 2 * 7 id + id$ shift
0 T 2 * 7 id 5 + id$ reduce by F→ id
0 T 2 * 7 F 10 + id$ reduce by T→T*F
0 T 2 + id$ reduce by E→ T
0 E 1 + id$ shift
0 E 1 + 6 i d $ shift
0 E 1 + 6 id 5 $ reduce by F→ id
0 E 1 + 6 F 3 $ reduce by T→F
0 E 1 + 6 T 9 $ reduce by E→E+T
0 E 1 $ accept

