
COMP-411 Compiler Design 

Presented by  

Dr Ioanna Dionysiou 

 
Copyright (c)  2012 Ioanna Dionysiou 

Administrative 
!  [ALSU07] Chapter 4 - Syntax Analysis 

– Top-down parsing (LL(1) parsers) section 4.4 

Copyright (c)  2012 Ioanna Dionysiou 

Chapter 4 Outline 
!  Top-down Parsing 

– Recursive-descent parsing 

– Non-recursive predictive parsing 

– Construction of predictive parser 

 

Copyright (c)  2012 Ioanna Dionysiou 

Top-down Parsing 
!   It is an attempt to  

– Find a leftmost derivation for an input string 
•  Construct a parse tree for the input  

–  Start from the root and create the nodes of the parse tree in pre-
order 

!  General form of top-down parsing 
– Recursive descent parsing  

•  May involve backtracking to find the correct A-production to 
be applied 

– Predicting Parsing  
•  Special case of recursive-decent parsing 
•  Predictive parsers do not allow backtracking 

–  Always choose the correct A-production by looking ahead the 
next input symbol 

   



Copyright (c)  2012 Ioanna Dionysiou 

Predictive Parsers 
!  Given the input symbol (i.e. token name) a and the 

nonterminal A to be expanded, this type of parser 
unambiguously determines the proper alternative 
that derives a string beginning with a 

  

stmt → if expr then stmt else stmt  
 | while expr do stmt 
 | begin stmt_list end  

The keywords if while begin tell us which alternative 
is the one to succeed if we scan tokens if while begin  
respectively   

Copyright (c)  2012 Ioanna Dionysiou 

Predictive Parsers 
!  It can be built using a stack 

– Explicitly 
•  Nonrecursive manner with the aid of a parsing table 

–  Implicitly (we will not cover this) 
•  Recursive procedure calls  

 

Copyright (c)  2012 Ioanna Dionysiou 

Nonrecursive Predictive Parsing 

Predictive Parsing 
Program 

Parsing Table 
M 

a    +   b   $ 

X 
Y 
Z 
$ 

OUTPUT 

INPUT 

STACK 

Copyright (c)  2012 Ioanna Dionysiou 

Nonrecursive Predictive Parsing 
!  The program considers  

–  X, the symbol on top of the stack 
–  a, the current input symbol.  
–  These two symbols determine the action of the parser. 

There are 3 possibilities: 
•  If X = a = $, the parser halts and announces successful completion 

of parsing 
•  If X = a ≠$, the parser pops X off the stack and advances the input 

pointer to the next input symbol 
•  If X is a nonterminal, the program consults entry M[X,a] of the 

parsing table M.  
–  This entry will be either an X-production of the grammar or an error 

entry. If for example, M[X,a] = {X→UVW}, the parser replaces X on 
top of the stack by WVU (with U on the top). As output, we shall 
assume that the parser just prints the production used; any other 
code could be executed here. If M[X,a] = error, the parser calls an 
error recovery routine. 



Copyright (c)  2012 Ioanna Dionysiou 

Nonrecursive Predictive Parsing 

Input : A string w and a parsing table M for grammar G 
 
Output: If w is in L(G), a leftmost derivation of w; otherwise an error 
 
Method: Initially the parser is in a configuration in which it has: 
              $S on the stack, with S the start symbol of G on top 

  w$ in the input buffer 
   

 
The algorithm that utilizes the predictive parsing table M to produce 
a parse tree for an input is shown on the next slide  
       

Copyright (c)  2012 Ioanna Dionysiou 

Nonrecursive Predictive Parsing 

set ip to point to the first symbol of w 
repeat 
    let X be the top stack symbol and a the symbol pointed to by ip   
    if X is a terminal or $ then 
        if X = a then 
          pop X from the stack and advance ip 
       else 
          error() 
    else {X is a nonterminal}  
       if M[X,a] = X →Y1Y2…Yk then 
          pop X from the stack  
          push Yk ,Yk-1 , …, Y1 onto the stack, with Y1 on top 
          output the production X →Y1Y2…Yk  
       else 
          error() 
until X = $ {stack is empty}    

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by the parser 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

id + id * id 

INPUT string w 

Derive the leftmost derivation for string w 

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by the parser 

Predictive Parsing 
Program 

id   +   id  *  id  $ 

OUTPUT 

INPUT 

STACK 

E 
$ 



Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
STACK INPUT OUTPUT 

$E id + id * i d $  
 

Initial  
configuration 

Check the top of the stack (E) and the current input symbol (id) 
Is there an entry in the parsing table? 

M[E,id] = E->TE’ 
Replace E by TE’, current input symbol is still id 

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
 
 

 
STACK INPUT OUTPUT 

$E id + id * id $  
$E’T  id + id * id $ E→TE’ 

 
 Check the top of the stack (T) and the current input symbol (id) 

Is there an entry in the parsing table? 
M[T,id] = E->FT’ 

Replace T by FT’, current input symbol is still id 

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
 
 

 
 

STACK INPUT OUTPUT 
$E id + id * id $  
$E’T  id + id * id $ E→TE’ 
$E’T’F  id + id * id $ T→FT’ 

 

What happens next??? 

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
 
 

 
 

STACK INPUT OUTPUT 
$E id + id * id $  
$E’T  id + id * id $ E→TE’ 
$E’T’F  id + id * id $ T→FT’ 
$E’T’ id id + id * id $ F→id 

 
Check the top of the stack (id) and the current input symbol (id) 

Pop off the stack id 
Since id=id, advance the current input pointer to + 



Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
 
 

 
 

STACK INPUT OUTPUT 
$E id + id * id $  
$E’T  id + id * id $ E→TE’ 
$E’T’F  id + id * id $ T→FT’ 
$E’T’ id id + id * id $ F→id 
$E’T’   + id * id $  

 
Continue… 

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
 
 

 
 

Continue… 

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
 
 

 
 

Continue… 

Copyright (c)  2012 Ioanna Dionysiou 

Moves made by parser  

 
 
 

 
 

Repeat the 
process until 
encounter $ on 
the stack 



Copyright (c)  2012 Ioanna Dionysiou 

Final “Moves” table  

 
 
 

 
 

Output corresponds to leftmost derivation  

Copyright (c)  2012 Ioanna Dionysiou 

!  We will use two functions 
– FIRST(α), where α is any string of grammar 

symbols 
•  Set of terminals that begin the strings derived from  α         

•  If α     ε, then ε is also in FIRST(α) 

– FOLLOW(A), where A is a nonterminal 
•  Set of terminals that can appear immediately to the 

right of nonterminal A in some sentential form 
–  S       αAdβ           S       αABdβ  with B→ε           

–  S       αA   then FOLLOW(S) belongs to FOLLOW(A)  

⇒ *     

⇒ *     

⇒ *     ⇒ *     

Construction of Predictive Parsing Table 

Copyright (c)  2012 Ioanna Dionysiou 

Compute FIRST(X) for all grammar symbols X 

!  Apply the rules until no more terminals or ε can be 
added to any FIRST set 
–  Rule 1 

•  If X is terminal, then FIRST(X) = {X} 
–  Rule 2 

•  If X→ε is a production, then add ε to FIRST(X)  

 FIRST(X)∪{ε} 
–  Rule 3 

•  If X is nonterminal and X→Y1Y2…Yk is a production, then place a 
in FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of 
FIRST(Y1),… FIRST(Yi-1); that is ( Y1Y2…Yi-1     ε). If ε is in 
FIRST(Yj) for all j=1,2,…,k, then add ε to FIRST(X) 

     
    In other words, everything in FIRST(Y1) except ε  is surely in FIRST(X). If Y1 

does not derive ε then we add nothing more to FIRST(X). But, if it does then 
we add FIRST(Y2) and so on…If all Y can derive ε, then add ε to FIRST(X) 

⇒ *     

Copyright (c)  2012 Ioanna Dionysiou 

Compute FOLLOW(X) for all nonterminals 

!  Apply the rules until nothing can be added to 
any FOLLOW set 
– Rule 1 

•  Place $ in FOLLOW(S), where S is the start symbol 
and $ is the input right end marker 

– Rule 2 
•  If A→αBβ is a production, then everything in FIRST(β) 

except for ε is placed in FOLLOW(B) 

– Rule 3 
•  If there is a production A→αB, or a production A→αBβ 

where FIRST(β) contains ε   (β derives ε) then 
everything in FOLLOW(A) is included in FOLLOW(B) 



Copyright (c)  2012 Ioanna Dionysiou 

Compute FIRST for  Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST(id) = {id} 
 
 

Tip 
FIRST(terminal) look the right 
side of the productions to find 
all terminals 
 
FIRST(terminal)={terminal} 

Copyright (c)  2012 Ioanna Dionysiou 

Compute FIRST for  Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST(id) = {id} 
 
FIRST(E) = FIRST(T) = FIRST(F) = {(, id} 
FIRST(E�) = FIRST(+) ∪ {ε} = {+, ε} 
FIRST(T�) = FIRST(*) ∪ {ε} = {*, ε} 

Tip 
FIRST(nonterminal) 
look the left side of 
the production and 
check what is after 
the arrow 

Copyright (c)  2012 Ioanna Dionysiou 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 

FOLLOW(E) 
 
Rule 1 
FOLLOW(E) = {$} 
 
Rule 2 (where does E appear on the right side but not as 
the last symbol?) 

 
F  ! (E)  
FOLLOW(E) = FOLLOW(E) U FIRST()) = {$,)} 
 
Rule 3 (where does E appear on the right side as the last 
symbol?or what follows derives ε?) 

Not applicable 
           
                      RESULT: FOLLOW(E) = {$,)} 

Compute FOLLOW for Grammar G 

Copyright (c)  2012 Ioanna Dionysiou 

FOLLOW(E�) 
 
Rule 1 
Not applicable 
 
Rule 2 
Not applicable 
 
Rule 3 
E  ! TE` 
FOLLOW(E�) = FOLLOW(E) = {$,)} 
E` ! +TE` 
No need to check this one! 
 
FOLLOW(E�) = {$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 



Copyright (c)  2012 Ioanna Dionysiou 

FOLLOW(T) 
Rule 1 
Not applicable 
Rule 2 
E  ! TE` 
FOLLOW(T) = FIRST(E�) = {+} (do not add ε ) 

E` ! +TE` 
No need to check this one! 
Rule 3 
E  ! TE` 
FOLLOW(T) = FOLLOW(T) U FOLLOW(E) = 
{+, $, )} 
E` ! +TE` 
FOLLOW(T) = FOLLOW(T) U FOLLOW(E�) = 
{+, $, )} 
                    FOLLOW(T) = {+,$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 

Copyright (c)  2012 Ioanna Dionysiou 

FOLLOW(T�) 
 
Rule 1 
Not applicable 
 
Rule 2 
Not applicable 
 
Rule 3 
T  !  FT` 
FOLLOW(T�) = FOLLOW(T)= {+, $, )} 
T` ! *FT` 
No need to check this one! 
 
FOLLOW(T�) = {+,$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 

Copyright (c)  2012 Ioanna Dionysiou 

FOLLOW(F) 
Rule 1 
Not applicable 
Rule 2 
T  !  FT`  
FOLLOW(F) = FIRST(T�) = {*} 
T` ! *FT` 
No need to check this one! 
Rule 3 
T  !  FT` 
FOLLOW(F) = FOLLOW(F) U FOLLOW(T) = 
{*, +, $, )} 
T` ! *FT` 
FOLLOW(F) = FOLLOW(F) U FOLLOW(T�) = 
{*, +, $, )} 
                           FOLLOW(F) = {*,+,$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 

Copyright (c)  2012 Ioanna Dionysiou 

Summary  

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  
FIRST(T�) = {*, ε} 
FIRST(E�) = {+, ε} 
 

FOLLOW(E) = {$,)} 
FOLLOW(F) = {*,+,$,)} 
FOLLOW(T�) = {+,$,)} 
FOLLOW(T) = {+,$,)} 
FOLLOW(E�) = {$,)} 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST(id) = {id} 



Copyright (c)  2012 Ioanna Dionysiou 

Construct a Predictive Parsing Table 

!  Idea 
– Suppose that A →α is a production with b in 

FIRST(α). 
•  The parser will expand A by α when the current symbol 

is b.  

•  The only complication is when α is ε or α derives ε.  
–  In this case we expand A again by α if the current input 

symbol b is in FOLLOW(A) or if the $ on the input has been 
reached and $ is in FOLLOW(A) 

 

Copyright (c)  2012 Ioanna Dionysiou 

Predictive Parsing Table 

Input : Grammar G 
 
Output: Parsing Table M 
 
Method: 
1)  For each production A→α of the grammar, do steps 2 and 3 

2)  For each terminal b in FIRST(α), add A→α to M[A, b] 
3)  If ε is in FIRST(α), add A→α to M[A,c] for each terminal c 

in FOLLOW(A). If ε is in FIRST(α) and $ is in FOLLOW(A), 
add   A→α to M[A,$] 

4)   Make each undefined entry of M be error   

Copyright (c)  2012 Ioanna Dionysiou 

In-class Exercise 
 Derive the parsing table for grammar G using the predictive 
parsing table algorithm.  

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

E ! TE` 
 
FIRST(TE’) = FIRST(T) = {(, id} 
  add E ! TE` to M[E,(] 
  add E ! TE` to M[E,id] 
 
Is ε in FIRST(T)? 
  No, so done for this production 
 
 



Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

E’ ! +TE` 
 
FIRST(+TE’) = FIRST(+) = {+} 
  add E’ ! +TE` to M[E’,+] 
   
Is ε in FIRST(+)? 
  No, so done for this production 
 
 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

E’ ! ε 
 
  
Is ε in FIRST(ε)? 
  Yes, so apply rule 3 
  FOLLOW(E’) = {$, )} 
      add E’ ! ε to M[E’, $] 
      add E’ ! ε to M[E’, )] 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

T! TF’ 
 
  
FIRST(TF’) = FIRST(T) = {(, id} 
  add T ! FT` to M[T,(] 
  add T ! FT` to M[T,id] 
 
Is ε in FIRST(T)? 
  No, so done for this production 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

T’! *FT’ 
 
  
FIRST(*FT’) =FIRST(*)= {*} 
  add T’ ! *FT’ to M[T’,*] 
 
Is ε in FIRST(*)? 
  No, so done for this production 



Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

T’ ! ε 
 
  
Is ε in FIRST(ε)? 
  Yes, so apply rule 3 
  FOLLOW(T’) = {+,$, )} 
      add T’ ! ε to M[T’, +] 
      add T’ ! ε to M[T’, $] 
      add T’ ! ε to M[T’, )] 
 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

F ! id 
 
  
FIRST(id) = {id} 
  add F ! id to M[F,id] 
 
Is ε in FIRST(id)? 
  No, so done for this production 
 
 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

F ! (E) 
 
  
FIRST((E)) = FIRST(() = {(} 
  add F ! (E) to M[F,(] 
 
Is ε in FIRST(()? 
  No, so done for this production 
 
 

Copyright (c)  2012 Ioanna Dionysiou 

LL(1) Grammars 
!  A grammar whose parsing table has no 

multiply-defined entries is set to be LL(1) 
– L 

•  scanning inputs from left to right 

– L  
•  producing leftmost derivation 

– 1  
•  using one input symbol of lookahead at each step to 

make parsing action 

!  LL(1)  
– No ambiguity  (use left-factoring) 
– No left recursion (eliminate left recursion) 


