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Administrative 
!  [ALSU07] Chapter 4 - Syntax Analysis 

– Top-down parsing (LL(1) parsers) section 4.4 
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Chapter 4 Outline 
!  Top-down Parsing 

– Recursive-descent parsing 

– Non-recursive predictive parsing 

– Construction of predictive parser 
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Top-down Parsing 
!   It is an attempt to  

– Find a leftmost derivation for an input string 
•  Construct a parse tree for the input  

–  Start from the root and create the nodes of the parse tree in pre-
order 

!  General form of top-down parsing 
– Recursive descent parsing  

•  May involve backtracking to find the correct A-production to 
be applied 

– Predicting Parsing  
•  Special case of recursive-decent parsing 
•  Predictive parsers do not allow backtracking 

–  Always choose the correct A-production by looking ahead the 
next input symbol 
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Predictive Parsers 
!  Given the input symbol (i.e. token name) a and the 

nonterminal A to be expanded, this type of parser 
unambiguously determines the proper alternative 
that derives a string beginning with a 

  

stmt → if expr then stmt else stmt  
 | while expr do stmt 
 | begin stmt_list end  

The keywords if while begin tell us which alternative 
is the one to succeed if we scan tokens if while begin  
respectively   
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Predictive Parsers 
!  It can be built using a stack 

– Explicitly 
•  Nonrecursive manner with the aid of a parsing table 

–  Implicitly (we will not cover this) 
•  Recursive procedure calls  
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Nonrecursive Predictive Parsing 

Predictive Parsing 
Program 

Parsing Table 
M 

a    +   b   $ 

X 
Y 
Z 
$ 

OUTPUT 

INPUT 

STACK 
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Nonrecursive Predictive Parsing 
!  The program considers  

–  X, the symbol on top of the stack 
–  a, the current input symbol.  
–  These two symbols determine the action of the parser. 

There are 3 possibilities: 
•  If X = a = $, the parser halts and announces successful completion 

of parsing 
•  If X = a ≠$, the parser pops X off the stack and advances the input 

pointer to the next input symbol 
•  If X is a nonterminal, the program consults entry M[X,a] of the 

parsing table M.  
–  This entry will be either an X-production of the grammar or an error 

entry. If for example, M[X,a] = {X→UVW}, the parser replaces X on 
top of the stack by WVU (with U on the top). As output, we shall 
assume that the parser just prints the production used; any other 
code could be executed here. If M[X,a] = error, the parser calls an 
error recovery routine. 
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Nonrecursive Predictive Parsing 

Input : A string w and a parsing table M for grammar G 
 
Output: If w is in L(G), a leftmost derivation of w; otherwise an error 
 
Method: Initially the parser is in a configuration in which it has: 
              $S on the stack, with S the start symbol of G on top 

  w$ in the input buffer 
   

 
The algorithm that utilizes the predictive parsing table M to produce 
a parse tree for an input is shown on the next slide  
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Nonrecursive Predictive Parsing 

set ip to point to the first symbol of w 
repeat 
    let X be the top stack symbol and a the symbol pointed to by ip   
    if X is a terminal or $ then 
        if X = a then 
          pop X from the stack and advance ip 
       else 
          error() 
    else {X is a nonterminal}  
       if M[X,a] = X →Y1Y2…Yk then 
          pop X from the stack  
          push Yk ,Yk-1 , …, Y1 onto the stack, with Y1 on top 
          output the production X →Y1Y2…Yk  
       else 
          error() 
until X = $ {stack is empty}    
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Moves made by the parser 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

id + id * id 

INPUT string w 

Derive the leftmost derivation for string w 
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Moves made by the parser 

Predictive Parsing 
Program 

id   +   id  *  id  $ 

OUTPUT 

INPUT 

STACK 

E 
$ 
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Moves made by parser  

 
STACK INPUT OUTPUT 

$E id + id * i d $  
 

Initial  
configuration 

Check the top of the stack (E) and the current input symbol (id) 
Is there an entry in the parsing table? 

M[E,id] = E->TE’ 
Replace E by TE’, current input symbol is still id 
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Moves made by parser  

 
 
 

 
STACK INPUT OUTPUT 

$E id + id * id $  
$E’T  id + id * id $ E→TE’ 

 
 Check the top of the stack (T) and the current input symbol (id) 

Is there an entry in the parsing table? 
M[T,id] = E->FT’ 

Replace T by FT’, current input symbol is still id 
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Moves made by parser  

 
 
 

 
 

STACK INPUT OUTPUT 
$E id + id * id $  
$E’T  id + id * id $ E→TE’ 
$E’T’F  id + id * id $ T→FT’ 

 

What happens next??? 
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Moves made by parser  

 
 
 

 
 

STACK INPUT OUTPUT 
$E id + id * id $  
$E’T  id + id * id $ E→TE’ 
$E’T’F  id + id * id $ T→FT’ 
$E’T’ id id + id * id $ F→id 

 
Check the top of the stack (id) and the current input symbol (id) 

Pop off the stack id 
Since id=id, advance the current input pointer to + 
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Moves made by parser  

 
 
 

 
 

STACK INPUT OUTPUT 
$E id + id * id $  
$E’T  id + id * id $ E→TE’ 
$E’T’F  id + id * id $ T→FT’ 
$E’T’ id id + id * id $ F→id 
$E’T’   + id * id $  

 
Continue… 
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Moves made by parser  

 
 
 

 
 

Continue… 
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Moves made by parser  

 
 
 

 
 

Continue… 
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Moves made by parser  

 
 
 

 
 

Repeat the 
process until 
encounter $ on 
the stack 
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Final “Moves” table  

 
 
 

 
 

Output corresponds to leftmost derivation  
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!  We will use two functions 
– FIRST(α), where α is any string of grammar 

symbols 
•  Set of terminals that begin the strings derived from  α         

•  If α     ε, then ε is also in FIRST(α) 

– FOLLOW(A), where A is a nonterminal 
•  Set of terminals that can appear immediately to the 

right of nonterminal A in some sentential form 
–  S       αAdβ           S       αABdβ  with B→ε           

–  S       αA   then FOLLOW(S) belongs to FOLLOW(A)  

⇒ *     

⇒ *     

⇒ *     ⇒ *     

Construction of Predictive Parsing Table 
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Compute FIRST(X) for all grammar symbols X 

!  Apply the rules until no more terminals or ε can be 
added to any FIRST set 
–  Rule 1 

•  If X is terminal, then FIRST(X) = {X} 
–  Rule 2 

•  If X→ε is a production, then add ε to FIRST(X)  

 FIRST(X)∪{ε} 
–  Rule 3 

•  If X is nonterminal and X→Y1Y2…Yk is a production, then place a 
in FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of 
FIRST(Y1),… FIRST(Yi-1); that is ( Y1Y2…Yi-1     ε). If ε is in 
FIRST(Yj) for all j=1,2,…,k, then add ε to FIRST(X) 

     
    In other words, everything in FIRST(Y1) except ε  is surely in FIRST(X). If Y1 

does not derive ε then we add nothing more to FIRST(X). But, if it does then 
we add FIRST(Y2) and so on…If all Y can derive ε, then add ε to FIRST(X) 

⇒ *     
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Compute FOLLOW(X) for all nonterminals 

!  Apply the rules until nothing can be added to 
any FOLLOW set 
– Rule 1 

•  Place $ in FOLLOW(S), where S is the start symbol 
and $ is the input right end marker 

– Rule 2 
•  If A→αBβ is a production, then everything in FIRST(β) 

except for ε is placed in FOLLOW(B) 

– Rule 3 
•  If there is a production A→αB, or a production A→αBβ 

where FIRST(β) contains ε   (β derives ε) then 
everything in FOLLOW(A) is included in FOLLOW(B) 
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Compute FIRST for  Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST(id) = {id} 
 
 

Tip 
FIRST(terminal) look the right 
side of the productions to find 
all terminals 
 
FIRST(terminal)={terminal} 
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Compute FIRST for  Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST(id) = {id} 
 
FIRST(E) = FIRST(T) = FIRST(F) = {(, id} 
FIRST(E�) = FIRST(+) ∪ {ε} = {+, ε} 
FIRST(T�) = FIRST(*) ∪ {ε} = {*, ε} 

Tip 
FIRST(nonterminal) 
look the left side of 
the production and 
check what is after 
the arrow 
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E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 

FOLLOW(E) 
 
Rule 1 
FOLLOW(E) = {$} 
 
Rule 2 (where does E appear on the right side but not as 
the last symbol?) 

 
F  ! (E)  
FOLLOW(E) = FOLLOW(E) U FIRST()) = {$,)} 
 
Rule 3 (where does E appear on the right side as the last 
symbol?or what follows derives ε?) 

Not applicable 
           
                      RESULT: FOLLOW(E) = {$,)} 

Compute FOLLOW for Grammar G 
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FOLLOW(E�) 
 
Rule 1 
Not applicable 
 
Rule 2 
Not applicable 
 
Rule 3 
E  ! TE` 
FOLLOW(E�) = FOLLOW(E) = {$,)} 
E` ! +TE` 
No need to check this one! 
 
FOLLOW(E�) = {$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 
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FOLLOW(T) 
Rule 1 
Not applicable 
Rule 2 
E  ! TE` 
FOLLOW(T) = FIRST(E�) = {+} (do not add ε ) 

E` ! +TE` 
No need to check this one! 
Rule 3 
E  ! TE` 
FOLLOW(T) = FOLLOW(T) U FOLLOW(E) = 
{+, $, )} 
E` ! +TE` 
FOLLOW(T) = FOLLOW(T) U FOLLOW(E�) = 
{+, $, )} 
                    FOLLOW(T) = {+,$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 
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FOLLOW(T�) 
 
Rule 1 
Not applicable 
 
Rule 2 
Not applicable 
 
Rule 3 
T  !  FT` 
FOLLOW(T�) = FOLLOW(T)= {+, $, )} 
T` ! *FT` 
No need to check this one! 
 
FOLLOW(T�) = {+,$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 
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FOLLOW(F) 
Rule 1 
Not applicable 
Rule 2 
T  !  FT`  
FOLLOW(F) = FIRST(T�) = {*} 
T` ! *FT` 
No need to check this one! 
Rule 3 
T  !  FT` 
FOLLOW(F) = FOLLOW(F) U FOLLOW(T) = 
{*, +, $, )} 
T` ! *FT` 
FOLLOW(F) = FOLLOW(F) U FOLLOW(T�) = 
{*, +, $, )} 
                           FOLLOW(F) = {*,+,$,)} 

Compute FOLLOW for Grammar G 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  

FIRST(T�) = {*, ε} 

FIRST(E�) = {+, ε} 
FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST( id ) = { id } 
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Summary  

FIRST(E) = {(, id} 
FIRST(T) = {(, id} 
FIRST(F) = {(, id}  
FIRST(T�) = {*, ε} 
FIRST(E�) = {+, ε} 
 

FOLLOW(E) = {$,)} 
FOLLOW(F) = {*,+,$,)} 
FOLLOW(T�) = {+,$,)} 
FOLLOW(T) = {+,$,)} 
FOLLOW(E�) = {$,)} 

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 

GRAMMAR G 

FIRST( + ) = {+} 
FIRST( * ) = {*} 
FIRST( ( ) = { ( } 
FIRST( ) ) = { ) }  
FIRST(id) = {id} 
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Construct a Predictive Parsing Table 

!  Idea 
– Suppose that A →α is a production with b in 

FIRST(α). 
•  The parser will expand A by α when the current symbol 

is b.  

•  The only complication is when α is ε or α derives ε.  
–  In this case we expand A again by α if the current input 

symbol b is in FOLLOW(A) or if the $ on the input has been 
reached and $ is in FOLLOW(A) 
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Predictive Parsing Table 

Input : Grammar G 
 
Output: Parsing Table M 
 
Method: 
1)  For each production A→α of the grammar, do steps 2 and 3 

2)  For each terminal b in FIRST(α), add A→α to M[A, b] 
3)  If ε is in FIRST(α), add A→α to M[A,c] for each terminal c 

in FOLLOW(A). If ε is in FIRST(α) and $ is in FOLLOW(A), 
add   A→α to M[A,$] 

4)   Make each undefined entry of M be error   
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In-class Exercise 
 Derive the parsing table for grammar G using the predictive 
parsing table algorithm.  

E  ! TE` 
E` ! +TE` | ε 
T  !  FT` 
T` ! *FT`| ε 
F  ! (E) | id 
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Let�s start the table 

E ! TE` 
 
FIRST(TE’) = FIRST(T) = {(, id} 
  add E ! TE` to M[E,(] 
  add E ! TE` to M[E,id] 
 
Is ε in FIRST(T)? 
  No, so done for this production 
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Let�s start the table 

E’ ! +TE` 
 
FIRST(+TE’) = FIRST(+) = {+} 
  add E’ ! +TE` to M[E’,+] 
   
Is ε in FIRST(+)? 
  No, so done for this production 
 
 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

E’ ! ε 
 
  
Is ε in FIRST(ε)? 
  Yes, so apply rule 3 
  FOLLOW(E’) = {$, )} 
      add E’ ! ε to M[E’, $] 
      add E’ ! ε to M[E’, )] 
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Let�s start the table 

T! TF’ 
 
  
FIRST(TF’) = FIRST(T) = {(, id} 
  add T ! FT` to M[T,(] 
  add T ! FT` to M[T,id] 
 
Is ε in FIRST(T)? 
  No, so done for this production 
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Let�s start the table 

T’! *FT’ 
 
  
FIRST(*FT’) =FIRST(*)= {*} 
  add T’ ! *FT’ to M[T’,*] 
 
Is ε in FIRST(*)? 
  No, so done for this production 
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Let�s start the table 

T’ ! ε 
 
  
Is ε in FIRST(ε)? 
  Yes, so apply rule 3 
  FOLLOW(T’) = {+,$, )} 
      add T’ ! ε to M[T’, +] 
      add T’ ! ε to M[T’, $] 
      add T’ ! ε to M[T’, )] 
 

Copyright (c)  2012 Ioanna Dionysiou 

Let�s start the table 

F ! id 
 
  
FIRST(id) = {id} 
  add F ! id to M[F,id] 
 
Is ε in FIRST(id)? 
  No, so done for this production 
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Let�s start the table 

F ! (E) 
 
  
FIRST((E)) = FIRST(() = {(} 
  add F ! (E) to M[F,(] 
 
Is ε in FIRST(()? 
  No, so done for this production 
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LL(1) Grammars 
!  A grammar whose parsing table has no 

multiply-defined entries is set to be LL(1) 
– L 

•  scanning inputs from left to right 

– L  
•  producing leftmost derivation 

– 1  
•  using one input symbol of lookahead at each step to 

make parsing action 

!  LL(1)  
– No ambiguity  (use left-factoring) 
– No left recursion (eliminate left recursion) 


