
COMP-421 Compiler Design

Presented by

Dr Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou

Administrative
!  [ALSU07] Chapter 4 - Syntax Analysis

– This week we will cover up to section 4.3

– Next week we will cover top-down parsing (LL(1)
parsers – section 4.4) and continue with bottom-
up parsing (LR parsers – sections 4.5-4.6)

Copyright (c) 2012 Ioanna Dionysiou

Lecture Outline
!  Role of parser

!  Context-free grammars
– Review definition, derivations and parse trees

!  Writing grammars
– Ambiguity, eliminating left recursion, left factoring

Copyright (c) 2012 Ioanna Dionysiou

Role of Parser

Lexical
Analyzer

Parser

token Parse
tree

Source
Program

get next token

Symbol
Table

Rest of
front end

Obtains a string of tokens from the lexical analyzer and
verifies that the string of tokens can be generated by the

grammar for the source language

Output is some representation of the parse tree

Intermediate
Representation

Role of Parser (2)
!  Assumption

– Output of parser is some representation of a
parse tree

!  In practice
– Other tasks are also performed

•  Collect more info about tokens

•  Type checking

•  Semantic analysis

•  Generating intermediate code

Copyright (c) 2012 Ioanna Dionysiou

Rest of front end

Copyright (c) 2012 Ioanna Dionysiou

Types of Parsers
!  3 categories

– Universal parsers
•  Can parse any grammar

•  Too inefficient to use in production compilers

– Top-down parsers
•  Parse trees constructed from top (root) to bottom (leaves)

– Bottom-up parsers
•  Parse trees constructed from bottom (leaves) up to the top

(root)

!  Most commonly used
– Top-down and Bottom-Up

–  Input scanned from left-to-right, one symbol at a time

Copyright (c) 2012 Ioanna Dionysiou

Syntax Error Handling
!  Most programming language specifications do

not describe error handling
–  It’s up to the compiler designer

!  Programs can contain errors at many different
level:
–  Lexical

•  Misspelling an identifier

– Syntactic (focus of error detection and recovery in a
compiler)

•  Arithmetic expression with unbalanced parentheses
– Semantic

•  Operator applied to an incompatible operand

–  Logical
•  Infinitely recursive call, use = instead of ==

Copyright (c) 2012 Ioanna Dionysiou

Syntax Error Handling
!  Goals of error handler in a parser

– Report the presence of errors clearly and
accurately

•  E.g. print the line that error found and indicate the
nature of the error

– Recover from each error quickly enough to be
able to detect subsequent errors

•  Panic mode, phrase level, error productions, global
correction

– Must not slow down the processing of correct
programs

Copyright (c) 2012 Ioanna Dionysiou

Lecture Outline
!  Role of parser

!  Context-free grammars
– Review definition, derivations and parse trees

!  Writing grammars
– Ambiguity, eliminating left recursion, left factoring

!  Top-down Parsing
– Recursive-descent parsing, non-recursive

predictive parsing, construction of predictive
parser

Copyright (c) 2012 Ioanna Dionysiou

Context-Free Grammars

stmt → if expr then stmt else stmt

!   Context-free grammars consists of terminals, nonterminals, a start
symbol, and productions

–  A set of tokens, known as terminal symbols (if, then, else)
–  A set of nonterminals, which are variables that denote sets of strings

(expr, stmt)

–  A set of productions where each production consists of

•  A nonterminal called the left side of the production

•  An arrow →

•  A sequence of terminals and/or nonterminals called the right side
of the production

–  A designation of one of the nonterminals as the start symbol (stmt)

Context-Free Grammars

Copyright (c) 2012 Ioanna Dionysiou

E→ E +E

E→ E * E

E→(E)

E→ -E

E→ id

Terminals?
Nonterminals?

Copyright (c) 2012 Ioanna Dionysiou

Notational Conventions
1)  These symbols are terminals:

1)  Lower-case letters early in the alphabet such as
a, b, c

2)  Operator symbols such as *,+, etc

3)  Punctuation symbols such as (),!

4)  Digits 0,…,9

5)  Boldface strings such as if, then

Copyright (c) 2012 Ioanna Dionysiou

Notational Conventions
2)  These symbols are nonterminals:

1)  Upper-case letters early in the alphabet such as
A, B, C

2)  The letter S, which when it appears, is usually
the start symbol

3)  Lower-case italic names such as expr, stmt

Copyright (c) 2012 Ioanna Dionysiou

Notational Conventions
3)  Upper-case letters late in the alphabet, such as X, Y, Z,

represent grammar symbols (either terminals or
nonterminals)

4)  Lower-case letters late in the alphabet, such as x, y, u, v,
represent strings of terminals

5)  Lower-case Greek letters represent strings of grammar
symbols (this is a way to represent a generic production)

 A !�

6)  If A !α1, A !α2, …, A !αk then we may write A α1|α2|αk

7)  Unless otherwise stated, the left side of the first production
is the start symbol

Notational Conventions

Copyright (c) 2012 Ioanna Dionysiou

E→ E +E

E→ E * E

E→(E)

E→ -E

E→ id

Using conventional notations, we
obtain the grammar on the right

E→ E +E | E * E |(E) |-E | id

Copyright (c) 2012 Ioanna Dionysiou

Derivations
!  There are several ways to view the process

by which a grammar defines a language
– Building a parse tree

•  graphical representation of derivation

– Derivational view
•  precise description of the top-down construction of a

parse tree
–  Idea: a production is a rewriting rule

–  Beginning with the start symbol, each rewriting step replaces
the nonterminal by the right side of one of its productions

Copyright (c) 2012 Ioanna Dionysiou

Derivations

E→ E +E | E * E |(E) |-E | id

The expression E → -E allows us to replace any instance of E
by -E

 E ⇒ -E is read �E derives -E�

We can take a single E and repeatedly apply productions in any
order to obtain a sequence of replacements

 E ⇒ -E ⇒ -(E) ⇒-(id)

The sequence of the above replacements is called a derivation of –(id) from E
This is a proof that one particular instance of an expression is the string –(id)

Grammar G

Copyright (c) 2012 Ioanna Dionysiou

General Derivation

α1⇒ α2 ⇒ … ⇒ αk α1 derives αk

Given Grammar G with start symbol S,

 L(G) is the language generated by G

 Strings in L(G) may only contain terminals of G

 A string of terminals w is in L(G) iff S w (sentence)

 If S α where α may contain nonterminals, then we say
 that α is a sentential form of G. A sentence is a
 sentential form with no nonterminals.

⇒ +

⇒ *

Copyright (c) 2012 Ioanna Dionysiou

Is –(id+id) a sentence of G?

!  At each step of derivation, there are 2
choices to be made:
– Which nonterminal to replace, and

– Having made this choice, which production to use
for that nonterminal

E→ E +E | E * E |(E) |-E | id Grammar G

Copyright (c) 2012 Ioanna Dionysiou

Is –(id+id) a sentence of G?

E⇒ -E ⇒ -(E)⇒ -(E+E) ⇒ -(id+E) ⇒ -(id+id)

E⇒ -E ⇒ -(E)⇒ -(E+E) ⇒ -(E+id) ⇒ -(id+id)

Order of replacement is different

E→ E +E | E * E |(E) |-E | id Grammar G

Copyright (c) 2012 Ioanna Dionysiou

Leftmost and rightmost derivations

!  Leftmost derivations
– Only the leftmost nonterminal in any sentential

form is replaced at each step

!  Rightmost derivations
– Only the rightmost nonterminal in any sentential

form is replaced at each step

E⇒ -E ⇒ -(E)⇒ -(E+E) ⇒ -(id+E) ⇒ -(id+id)

E⇒ -E ⇒ -(E)⇒ -(E+E) ⇒ -(E+id) ⇒ -(id+id)

⇒
rm

⇒
lm

Copyright (c) 2012 Ioanna Dionysiou

Parse Trees and Derivations
!  Graphical representation of a derivation
!  Filters out the choice regarding replacement

order
–  Ignores variations in the order in which symbols in

sentential forms are replaced
•  Many-to-one relationship between derivations and

parse trees

– Every parse tree has associated with it a unique
leftmost and a unique rightmost derivation

•  We should not assume that every sentence necessarily
has one parse tree only or only one leftmost or
rightmost derivation!

–  AMBIGUITY

Copyright (c) 2012 Ioanna Dionysiou

Parse Tree Definition
!  Formally, given a context-free grammar, a parse tree

is a tree with the following properties:
–  The root is labeled by the start symbol
–  Each leaf is labeled by a terminal or by ε (empty string)
–  Each interior node is labeled by a nonterminal
–  If A is the nonterminal labeling some interior node and X1,

X2, …, Xn are the labels of the children of that node from
left to right, then A → X1 X2 …Xn is a production.

•  Here X1, X2, …, Xn stand for a symbol that is either a terminal or a
nonterminal.

Copyright (c) 2012 Ioanna Dionysiou

Building parse tree for derivations

E⇒ -E ⇒ -(E) ⇒ -(E+E) ⇒ -(id+E) ⇒ -(id+id)

E

-

E

E -

E

E

(E)

-

E

E

(E)

E + E

-

E

E

(E)

E + E

id

-

E

E

(E)

E + E

id id

Copyright (c) 2012 Ioanna Dionysiou

Building parse tree for derivations

E⇒ -E ⇒ -(E) ⇒ -(E+E) ⇒ -(E+id) ⇒ -(id+id)

E

-

E

E -

E

E

(E)

-

E

E

(E)

E + E

-

E

E

(E)

E + E

id

-

E

E

(E)

E + E

id id

Copyright (c) 2012 Ioanna Dionysiou

Parse Trees and Grammar Ambiguity

E→ E +E | E * E |(E) |-E | id

Derive the leftmost derivation of sentence id+id*id

Copyright (c) 2012 Ioanna Dionysiou

Leftmost Derivation 1

E⇒ E + E⇒ id + E⇒ id + E * E⇒ id + id * E⇒ id+id*id

* E

E

E + E

id E

id id

E→ E +E | E * E |(E) |-E | id

Copyright (c) 2012 Ioanna Dionysiou

Leftmost Derivation 2

E⇒ E * E⇒ E + E *E ⇒ id + E * E⇒ id + id * E⇒ id+id*id

+ E

E

E * E

id E

id id

E→ E +E | E * E |(E) |-E | id

Grammar Ambiguity

 A grammar that produces more than one
parse trees for some sentence it said to be

ambiguous!

Copyright (c) 2012 Ioanna Dionysiou

Summary
!  How can we verify that a sentence belongs to

the language generated by grammar G?
– Parse tree

– Derivation

– Or formal proof

Copyright (c) 2012 Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou

Lecture Outline
!  Role of parser

!  Context-free grammars

– Review definition, derivations and parse trees

!  Writing grammars

– Ambiguity, eliminating left recursion, left factoring

!  Top-down Parsing

– Recursive-descent parsing, non-recursive
predictive parsing, construction of predictive parser

Copyright (c) 2012 Ioanna Dionysiou

Writing Grammars
!  Grammars are more powerful than regular

expressions
–  A construct that can be described by a regular expression

can also be described by a grammar
•  Construct NFA from r.e.

•  Convert NFA into a grammar using simple construction rules
–  For each state i create a nonterminal symbol Ai

–  If state i has transition to state j on symbol a, then introduce production Ai
!aAj

–  If state i has a transition to state j on input ε, then introduce production Ai !Aj

–  If state i is an accepting state then introduce Ai !ε

–  If state i is the start state, make Ai the start symbol of the grammar

– But not vice versa!

Grammars and Lexical Analysis
!  Why user regular expressions to define lexical

syntax of a language?
– Lexical rules are frequently simple
– Regular expressions provide a notation that is

more suitable for tokens than grammars
– More efficient lexical analyzers can be

constructed automatically from regular
expressions than from arbitrary grammars

– Separating the syntactic structure into lexical and
non-lexical parts provides a convenient way of
modularizing the front-end of the compiler into two
manageable-sized components

Copyright (c) 2012 Ioanna Dionysiou Copyright (c) 2012 Ioanna Dionysiou

Eliminating Ambiguity
!  Sometimes an ambiguous grammar can be

rewritten to eliminate ambiguity

stmt → if expr then stmt

 | if expr then stmt else stmt

if E1 then if E2 then S1 else S2

Derive the parse tree for the following nested if statement
(answer in [ALSU07], page 211)

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Ambiguity
!  Rule for matching if-else

–  Match each else with the closest previous unmatched
then

!  Statement appearing between a then and else must

be ‘matched’

 stmt → matched_stmt
 | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt
unmatched_stmt → if expr then stmt

 | if expr then matched_stmt else unmatched_stmt

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Ambiguity
!  Derive the parse tree for the following string

using the unambiguous grammar

 (answer in [ALSU07],page 210)

 if E1 then if E2 then S1 else S2

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion
!  A grammar is left recursive if

–  it has a nonterminal A such that there is a
derivation A Aα for some string α

 A !Aα | β
– For instance, which productions are left recursive?

•  E !Ex

•  E !(E)

!  Top-down parsing cannot handle left-recursive
grammars
– Need to eliminate it

⇒ +

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion

General case: A !Aα | β

Example: expr ! expr + term | stmt

 A is expr

 α is + term

 β is stmt

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion

General case: A !Aα | β

Non-left-recursive: A ! βR

 R ! αR | ε

R is a new nonterminal

Right-recursive grammar

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion

E ! E + T | T
T ! T * F | F
F ! (E) | id

General case: A !Aα | β

Non-left-recursive: A ! βR

 R ! αR | ε

Eliminate the immediate left recursion from the grammar G

First, eliminate the immediate left recursion that occurs for E

α  is +T
β is T

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion

E ! TE`
E` ! +TE` | ε

E ! E + T | T
T ! T * F | F
F ! (E) | id

New transformed grammar so far is
 E ! TE`

E` ! +TE` | ε
T ! T * F | F
F ! (E) | id

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion

E ! TE`
E` ! +TE` | ε
T ! FT`
T` ! *FT`| ε
F ! (E) | id

Second, eliminate the immediate left recursion that occurs for T

α  is *F
β is F

E ! TE`
E` ! +TE` | ε
T ! T * F | F
F ! (E) | id

T ! FT`
T` ! *FT`| ε

Final transformed grammar is

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion
!  This technique does not eliminate left

recursion involving derivations of two or more
steps

S ! A a | b
A ! Ac | Sd | ε

In this case, S is left-recursive because

 S⇒Aa⇒Sda

Copyright (c) 2012 Ioanna Dionysiou

Eliminating Left Recursion

Arrange the nonterminals in some order A1, A2, …, An

for i:= 1 to n do
begin

 for j:= 1 to i-1 do
 begin
 replace each production of the form Ai!Aj γ
 by the productions Ai !δ1γ |δ2γ|…|δkγ
 where Aj!δ1|δ2|…|δk are all the current Aj productions
 end

 eliminate the immediate left recursion among the Ai productions

end

Copyright (c) 2012 Ioanna Dionysiou

In-class Exercise

Order the nonterminals
 S, A

i = 1
Immediate left-recursion among S productions?

 No, so nothing happens
i = 2
we substitute the S in A-production A → Sd to obtain the
following A-productions

 A → Ac | Aad | bd | ε
eliminate the left recursion among A productions
 A → bdA’ | A’
 A → cA’ | adA’ |ε

S ! A a | b
A ! Ac | Sd | ε

Copyright (c) 2012 Ioanna Dionysiou

Solution

S ! A a | b
A ! bdA` | A`
A` ! cA` | adA` | ε

Copyright (c) 2012 Ioanna Dionysiou

Left Factoring
!  It is a grammar transformation that is useful

for producing a grammar suitable for
predictive parsing
–  Idea:

•  Suppose that it is not clear which of two alternative
productions to use to expand a nonterminal A

•  Rewrite the A-productions to defer this decision when
more input is seen (be able to make a right choice
then)

Copyright (c) 2012 Ioanna Dionysiou

Left factoring

stmt → if expr then stmt else stmt
 | if expr then stmt

Suppose that we have identified token if

 Which production for stmt to expand?

Copyright (c) 2012 Ioanna Dionysiou

Left factoring

 A →αβ1|αβ2

Suppose input begins with a nonempty string derived from α,
then we do not know whether to expand A to αβ1 or αβ2

We could defer the decision by expanding A to αA`

Then after seeing the input derived from α we expand A` to β1
or β2

Copyright (c) 2012 Ioanna Dionysiou

Left factoring

A →αβ1|αβ2

A →αA`
A` →β1|β2

See [ALSU07], page 214, Algorithm 4.21

Copyright (c) 2012 Ioanna Dionysiou

Left factoring Example

stmt → if expr then stmt else stmt
 | if expr then stmt
 | a
expr → b

Copyright (c) 2012 Ioanna Dionysiou

Solution

stmt → if expr then stmt stmt`
 | a

stmt` → else stmt | ε
expr → b

