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Lecture Outline 
!  Lexical Analyzer 

– Lex 

!  Lex Examples 

 

 Figures and part of the lecture notes taken from  
�A compact guide to lex&yacc�, epaperpress.com 
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What is Lex? 
!  Lex is a tool for building lexical analyzers or 

lexers 

!  A lexer takes an arbitrary input stream and 
tokenizes it  
– Divides it into lexical tokens 

•  Tokenized output can be furthered processed, usually 
by yacc 

•  It can be the end product 

Copyright (c)  2012 Ioanna Dionysiou 4 

Lex Specification 
!  Lex specification 

– Create a set of patterns 
•   which lex matches against the input 

– When one of the patterns matches 
•  the lex program invokes C code  

–  you provide this code that does something with the matched 
text 

– Lex itself does not produce an executable 
program 

•  it translates the lex specification into a file containing a 
C routine called yylex() 

•  your program calls yylex() to run the lexer 
•  using C compiler, you compile the file that lex produced  



Lex in Compilation Sequence 
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Lex and Yacc 
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Lex Pattern Matching 
!  Lex is using a rich regular expression 

language 
– Any regular expression can be expressed as a 

FSA 

– Lex is using regular expressions for pattern 
matching 

•  There are limitations though 

•  Lex only has states and transitions between states 
–  Lex cannot be used to recognize nested structures such as 

parentheses 

– Nested structures are handled by incorporating a stack 

–  Yacc augments the DFA with a stack and can process those 
easily 

 

Lex Pattern Matching 
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Pattern Matching Primitives 

Pattern Matches  
. Any single character except newline 

* Zero or more occurrences of the preceding expression 

+ One or more occurrences of the preceding expression 

? Zero or one occurrence of the preceding expression 

�…� Literal within the quotation marks, C escape sequences are 
recognized (\n, \t, …) 

[ ] Character class (matches any character within brackets).  
If the first character is ^ it changes the meaning to match any 
character except the ones within the brackets 
A dash - indicates a character range 
A dash - or bracket as the first character lets you include dashes 
and brackets in character classes 
C escape sequences with \ are recognized 
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Pattern Matching Primitives 

Pattern Matches  
^ Beginning of line as the first character (also used for negation within 

square brackets 

\ Used to escape sequences  

| Either the preceding expression or the following  

/ Matches the preceding expression but only if followed by the 
following regular expression  

() Sequences of characters 
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Pattern Matching Examples 
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Pattern Matching Examples 
�if� 
 
[\n\t ] 
 
.* 
 
#.* 
 
\/\/.*    
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Pattern Matching Rule  
!  If two patterns match the same string, the 

longest match wins! 
–  In case both matches are the same length, then 

the first pattern listed is used 
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!  A lex specification consists of three sections: 
–  Definition section 

–  Rules section 

–  User subroutines section 

•  The parts are separated by lines consisting of %% 

•  The first two parts are required, although a part may be empty 

•  The third part and the preceding %% may be omitted  

Lex Specification Sections 
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Definition Section 
!  It can include  

–  literal block 

– definitions 
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Definition Section - Literal Block 

!  The literal block in the definition section is C code 
bracketed by the lines %{ and %} 

 
%{ 
C code declarations 
%} 
 

!  C code is copied verbatim to the generated C 
source file near the beginning, before the 
beginning of yylex() 
–  It usually contains  

•  declarations of variables and functions used by code in the 
rules section,  

•  #include lines for header files 
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Definition Section - Definitions  
!  Definitions (or substitutions)  

– allow you to name a regular expression (or part of 
it ) and refer to it by name in the rules section 

–  It is useful to break up complex expressions  

!  Definition Syntax 
– NAME expression  

•  where name can contain letters, digits, underscores, 
and must not start with a digit. Some implementations 
allow hyphen as well 

• e.g. DIGIT [0-9] 
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Rules Section 
!  It contains pattern lines and C code 

– A line that starts with  
•  a whitespace or material enclosed in %{ and %} is C 

code  

– A line that starts with  
•  anything else is a pattern line 
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C code lines 
!  They are copied verbatim to the generated C 

file 
!  Lines at the beginning of the section are 

placed near the beginning of the generated 
yylex() function 
– Should be  

•  declarations of variables used by code associated with 
the patterns 

•  initialization code for the scanner 

– C code lines anywhere else are copied to an 
unspecified place in the generated file 

•  should contain only comments  
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Pattern lines 
!  They contain a pattern followed by some 

whitespace and C code to execute when the 
input matches the pattern 
–  If C code is more than one statement or spans 

multiple lines, it must be enclosed in braces {} 
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Pattern lines  
!  It may include references to definitions with 

the name in braces   

  

  

     {DIGIT}+ 
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Pattern Matching while Scanning input… 

!  Lexer runs… 
– matches the input against the patterns in the rules 

section. 
•  Every time it finds a match (token) it executes the C 

code  associated with that pattern 
–  If a pattern is followed by | (instead of C code), the pattern 

uses the same C code as the next pattern in the file 

•  When an input character matches no pattern, the lexer 
acts as though it matched a pattern whose code is 
�ECHO�  

–  ECHO is a macro that writes code matched by the pattern  

» writes a copy of the token to the output  
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User Subroutines Section 
!  The contents of this section are copied 

verbatim by lex to the C file 
– This section typically includes routines called from 

the rules 

–  If you redefine input(), unput(), output() or 
yywrap(), then the new versions might be here 
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Lex Predefined Variables 
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Lex Example 

Empty definition section 
 
 
Two patterns specified in 
rules section 
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Lex Example 

Defaults 
yyin is stdin 
yyout is stdout 
 
You may change these 
to read from and write to 
a file respectively     
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Lex Example 

yywrap() is called when 
lex encounters an end of 
file.  
 
It returns either 1 (done) 
or 0 (more processing is 
required)     
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Lex example 2 

Definition Section : 1 declaration 
Rules Section: 1 pattern 
Subroutine Section : main routine 
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Lex Example 3 

Definition Section : 2 definitions, 1 declaration 
Rules Section: 1 pattern 
Subroutine Section : main routine 
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Lex Example 4 

Definition Section : 3 declarations 
Rules Section: 2 patterns 
Subroutine Section : main routine 
 


