
COMP-421 Compiler Design

Presented by

Dr Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou 2

Lecture Outline
!  Lexical Analyzer

– Lex

!  Lex Examples

 Figures and part of the lecture notes taken from
�A compact guide to lex&yacc�, epaperpress.com

Copyright (c) 2012 Ioanna Dionysiou 3

What is Lex?
!  Lex is a tool for building lexical analyzers or

lexers

!  A lexer takes an arbitrary input stream and
tokenizes it
– Divides it into lexical tokens

•  Tokenized output can be furthered processed, usually
by yacc

•  It can be the end product

Copyright (c) 2012 Ioanna Dionysiou 4

Lex Specification
!  Lex specification

– Create a set of patterns
•  which lex matches against the input

– When one of the patterns matches
•  the lex program invokes C code

–  you provide this code that does something with the matched
text

– Lex itself does not produce an executable
program

•  it translates the lex specification into a file containing a
C routine called yylex()

•  your program calls yylex() to run the lexer
•  using C compiler, you compile the file that lex produced

Lex in Compilation Sequence

Copyright (c) 2012 Ioanna Dionysiou 5 Copyright (c) 2012 Ioanna Dionysiou 6

Lex and Yacc

Copyright (c) 2012 Ioanna Dionysiou 7

Lex Pattern Matching
!  Lex is using a rich regular expression

language
– Any regular expression can be expressed as a

FSA

– Lex is using regular expressions for pattern
matching

•  There are limitations though

•  Lex only has states and transitions between states
–  Lex cannot be used to recognize nested structures such as

parentheses

– Nested structures are handled by incorporating a stack

–  Yacc augments the DFA with a stack and can process those
easily

Lex Pattern Matching

Copyright (c) 2012 Ioanna Dionysiou 8

Copyright (c) 2012 Ioanna Dionysiou 9

Pattern Matching Primitives

Pattern Matches
. Any single character except newline

* Zero or more occurrences of the preceding expression

+ One or more occurrences of the preceding expression

? Zero or one occurrence of the preceding expression

�…� Literal within the quotation marks, C escape sequences are
recognized (\n, \t, …)

[] Character class (matches any character within brackets).
If the first character is ^ it changes the meaning to match any
character except the ones within the brackets
A dash - indicates a character range
A dash - or bracket as the first character lets you include dashes
and brackets in character classes
C escape sequences with \ are recognized

Copyright (c) 2012 Ioanna Dionysiou 10

Pattern Matching Primitives

Pattern Matches
^ Beginning of line as the first character (also used for negation within

square brackets

\ Used to escape sequences

| Either the preceding expression or the following

/ Matches the preceding expression but only if followed by the
following regular expression

() Sequences of characters

Copyright (c) 2012 Ioanna Dionysiou 11

Pattern Matching Examples

Copyright (c) 2012 Ioanna Dionysiou 12

Pattern Matching Examples
�if�

[\n\t]

.*

#.*

\/\/.*

Copyright (c) 2012 Ioanna Dionysiou 13

Pattern Matching Rule
!  If two patterns match the same string, the

longest match wins!
–  In case both matches are the same length, then

the first pattern listed is used

Copyright (c) 2012 Ioanna Dionysiou 14

!  A lex specification consists of three sections:
–  Definition section

–  Rules section

–  User subroutines section

•  The parts are separated by lines consisting of %%

•  The first two parts are required, although a part may be empty

•  The third part and the preceding %% may be omitted

Lex Specification Sections

Copyright (c) 2012 Ioanna Dionysiou 15

Definition Section
!  It can include

–  literal block

– definitions

Copyright (c) 2012 Ioanna Dionysiou 16

Definition Section - Literal Block

!  The literal block in the definition section is C code
bracketed by the lines %{ and %}

%{
C code declarations
%}

!  C code is copied verbatim to the generated C
source file near the beginning, before the
beginning of yylex()
–  It usually contains

•  declarations of variables and functions used by code in the
rules section,

•  #include lines for header files

Copyright (c) 2012 Ioanna Dionysiou 17

Definition Section - Definitions
!  Definitions (or substitutions)

– allow you to name a regular expression (or part of
it) and refer to it by name in the rules section

–  It is useful to break up complex expressions

!  Definition Syntax
– NAME expression

•  where name can contain letters, digits, underscores,
and must not start with a digit. Some implementations
allow hyphen as well

• e.g. DIGIT [0-9]

Copyright (c) 2012 Ioanna Dionysiou 18

Rules Section
!  It contains pattern lines and C code

– A line that starts with
•  a whitespace or material enclosed in %{ and %} is C

code

– A line that starts with
•  anything else is a pattern line

Copyright (c) 2012 Ioanna Dionysiou 19

C code lines
!  They are copied verbatim to the generated C

file
!  Lines at the beginning of the section are

placed near the beginning of the generated
yylex() function
– Should be

•  declarations of variables used by code associated with
the patterns

•  initialization code for the scanner

– C code lines anywhere else are copied to an
unspecified place in the generated file

•  should contain only comments

Copyright (c) 2012 Ioanna Dionysiou 20

Pattern lines
!  They contain a pattern followed by some

whitespace and C code to execute when the
input matches the pattern
–  If C code is more than one statement or spans

multiple lines, it must be enclosed in braces {}

Copyright (c) 2012 Ioanna Dionysiou 21

Pattern lines
!  It may include references to definitions with

the name in braces

 {DIGIT}+

Copyright (c) 2012 Ioanna Dionysiou 22

Pattern Matching while Scanning input…

!  Lexer runs…
– matches the input against the patterns in the rules

section.
•  Every time it finds a match (token) it executes the C

code associated with that pattern
–  If a pattern is followed by | (instead of C code), the pattern

uses the same C code as the next pattern in the file

•  When an input character matches no pattern, the lexer
acts as though it matched a pattern whose code is
�ECHO�

–  ECHO is a macro that writes code matched by the pattern

» writes a copy of the token to the output

Copyright (c) 2012 Ioanna Dionysiou 23

User Subroutines Section
!  The contents of this section are copied

verbatim by lex to the C file
– This section typically includes routines called from

the rules

–  If you redefine input(), unput(), output() or
yywrap(), then the new versions might be here

Copyright (c) 2012 Ioanna Dionysiou 24

Lex Predefined Variables

Copyright (c) 2012 Ioanna Dionysiou 25

Lex Example

Empty definition section

Two patterns specified in
rules section

Copyright (c) 2012 Ioanna Dionysiou 26

Lex Example

Defaults
yyin is stdin
yyout is stdout

You may change these
to read from and write to
a file respectively

Copyright (c) 2012 Ioanna Dionysiou 27

Lex Example

yywrap() is called when
lex encounters an end of
file.

It returns either 1 (done)
or 0 (more processing is
required)

Copyright (c) 2012 Ioanna Dionysiou 28

Lex example 2

Definition Section : 1 declaration
Rules Section: 1 pattern
Subroutine Section : main routine

Copyright (c) 2012 Ioanna Dionysiou 29

Lex Example 3

Definition Section : 2 definitions, 1 declaration
Rules Section: 1 pattern
Subroutine Section : main routine

Copyright (c) 2012 Ioanna Dionysiou 30

Lex Example 4

Definition Section : 3 declarations
Rules Section: 2 patterns
Subroutine Section : main routine

