

COMP-421 Compiler Design

Presented by Dr Ioanna Dionysiou

Administrative

[ASU07] Chapter 3 - Lexical Analysis

Reading for next time...
– [ASU07] Chapter 3

Lecture Outline

Construction of NFA from a regular expression

– Thompson's algorithm

Conversion of NFA into DFA

- Subset construction algorithm

Construction of NFA from r

- There are many techniques for building a recognizer from a regular expression
 - We will examine Thompson's construction

Thompson's Construction

- Given a regular expression r over Σ we will produce an NFA accepting L(r)
- We will show how to construct automata
 - to recognize $\boldsymbol{\epsilon}$
 - to recognize any symbol in the alphabet
 - for expressions containing
 - Alternation
 - Concatenation
 - Kleene closure
- Solution As the construction proceeds, each step introduces at most 2 new states

Thompson's Construction Steps

- 1. Parse (break down) r into its constituent subexpressions
- 2. Using rules (1),(2) construct NFAs for each of the basic symbols in r
 - If a symbol occurs several times in r, a separate NFA is constructed for each occurrence
- 3. Combine NFAs inductively using rule (3) until we obtain the NFA for the entire expression
 - Each intermediate NFA has exactly one final state, no edge enters the start state and no edge leaves the final state

Rule 1

For $\boldsymbol{\epsilon},$ construct the NFA

i is the new initial state f is the new final state

Rule 2

For symbol a in Σ , construct the NFA

i is the new initial state f is the new final state

Rule 3

Suppose that N(s) and N(t) are NFA's for regular expressions s and t respectively

Rule 3 for N(s|t)

For regular expression s|t construct NFA N(s|t)

Rule 3 for N(st)

For regular expression st construct NFA N(st)

Rule 3 for N(s*)

For regular expression s* construct NFA N(s*)

Rule 3 for N((s))

For regular expression (s) construct NFA N((s)) = N(s)

Exercise

Solution Construct N(r) for $r = (a|b)^*a$

- First break down the expression into smaller ones
 - r1 = a
 - r2 = b
 - r3 = a|b
 - r4 = (a|b)
 - r5 = (a|b)*
 - r6 = a
 - r7 = (a|b)*a
- Next, construct all the intermediate NFAs using rules 1,2, and 3 to reach the final NFA.

Copyright (c) 2012 Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou

In-class Exercise

- Using Thompson's construction algorithm construct NFA for
 - a(ab)*a
 - (a|b|c)a
 - -01*0

Lecture Outline

Sonstruction of NFA from a regular expression

- Thompson's algorithm
- Conversion of NFA into DFA
 - Subset construction algorithm

Conversion of NFA into DFA

NFA

- More than one transition from a state on input $\boldsymbol{\alpha}$
- Multivalued transition function makes it hard to simulate a NFA
 - If there are many paths that spell out the same input string, we may have to consider them all before we find one that leads to acceptance or rejection
- Subset construction algorithm
 - Constructs from a NFA a DFA that recognizes the same language
 - Similar ideas to construct LR parsers (chapter 4)

General Idea

- Each DFA state corresponds to a set of NFA states
 - DFA uses its state to keep track of all possible states the NFA can be in after reading each input symbol

Subset Construction Algorithm

Constructing a DFA from a NFA

Input: a NFA N Output: a DFA D accepting the same language

Method: construct transition table Dtran so that D will simulate "in parallel" all possible moves N can make on a given input string

Operations on NFA states

OPERATION	DESCRIPTION
ε-closure(s)	Set of NFA states reachable from NFA state s on ϵ -transition alone
ε-closure(T)	Set of NFA states reachable from NFA state s in T on ϵ -transition alone
move(T,α)	Set of NFA states to which there is a transition on input symbol α from some NFA state s in T

s represents an NFA state T represents a set of NFA states

Before it sees any input symbol, N can be in any of the states in the set ϵ -closure(s₀), where s₀ is the start state of N

 ϵ -closure(0) = {0,1,2,4,7} = T

Copyright (c) 2012 Ioanna Dionysiou

Computation of ε-closure

Suppose that exactly the states in set T are reachable from s_0 on a given sequence of input symbols, and let α be the next input symbol. On seeing α , N can move to any of the states in the set move(T, α). When we allow for transitions, N can be in any one the states in ϵ -closure(move(T, α)) after seeing α

 \mathcal{E} -closure(move(T,a)) =

- $E -closure(move({0,1,2,4,7},a)) =$
- \mathcal{E} -closure({3,8}) = {1,2,3,4,6,7,8}

Copyright (c) 2012 Ioanna Dionysiou

We construct Dstates (the set of states of D) and Dtran (the transition table of D) in the following manner:

1. Each state of D corresponds to a set of NFA states that N could be in after reading some sequence of input symbols, including all possible e transitions before or after symbols are read.

2. The start state of D is e-closure(s0)

3. States and transitions are added to D using the algorithm of next slide

4. A state of D is an accepting state if it is a set of NFA states containing at least one accepting state of N.

Example

First, need to compute ε -closure(0) ε -closure(0) = {0,1,2,4,7}

Let's call this A = $\{0,1,2,4,7\}$, and this is the start state of the equivalent DFA Unmarked set = $\{A\}$

Let's call this $B = \{1, 2, 3, 4, 6, 7, 8\}$, and this is another state of t equivalent DFA Dtran[A,a] = B Unmarked set = $\{B\}$ UNIVERSITY OF NICOSIA Copyright (c) 2012 Joanna Dionysiou

equivalent DFA Dtran[A,b] = C

Unmarked set = {B,C}

Continuing the example...

- The process is now repeated for all elements of the unmarked set
 - Unmarked set = {B, C}
 - These sets may produced new sets that are added to the unmarked set
- Eventually, all sets that are states of the DFA are marked
 - Unmarked set = { }
- For the example, here are 5 different sets of states that are constructed
 - A (start state), B, C, D, E (accepting state)

DFA and DTran

