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Administrative 
!  [ASU07] Chapter 3 - Lexical Analysis 

 

!  Reading for next time… 
–  [ASU07] Chapter 3 
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Lecture Outline 
!  Construction of NFA from a regular 

expression 
– Thompson’s algorithm 

!  Conversion of NFA into DFA 
– Subset construction algorithm  
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Construction of NFA from r 
!  There are many techniques for building a 

recognizer from a regular expression 
– We will examine Thompson’s construction  
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Thompson’s Construction 
!  Given a regular expression r over Σ we will produce 

an NFA accepting L(r) 
!  We will show how to construct automata 

–  to recognize ε 
–  to recognize any symbol in the alphabet 
–  for expressions containing 

•  Alternation 
•  Concatenation 
•  Kleene closure 

!  As the construction proceeds, each step introduces 
at most 2 new states  
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Thompson’s Construction Steps 
1.  Parse (break down) r into its constituent 

subexpressions 
2.  Using rules (1),(2) construct NFAs for each of the 

basic symbols in r 
•  If a symbol occurs several times in r, a separate NFA is 

constructed for each occurrence 
3.  Combine NFAs inductively using rule (3) until we 

obtain the NFA for the entire expression 
•  Each intermediate NFA has exactly one final state, no 

edge enters the start state and no edge leaves the final 
state 
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Rule 1 

For ε, construct the NFA 

f i 
start ε 

i is the new initial state 
f is the new final state 
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Rule 2 

For symbol a in Σ, construct the NFA 

f i 
start a 

i is the new initial state 
f is the new final state 
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Rule 3 

Suppose that N(s) and N(t) are NFA’s for regular 
expressions s and t respectively  

N(s) N(t) 
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Rule 3 for N(s|t)   

For regular expression s|t construct NFA N(s|t) 

N(s) 

N(t) 

f i 

start 

ε 

ε 

ε 

ε 
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Rule 3 for N(st)   

For regular expression st construct NFA N(st) 

N(s) i N(t) f 

start 
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Rule 3 for N(s*)   

For regular expression s* construct NFA N(s*) 

N(s) f i 
start 

ε 

ε 

ε 

ε 
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Rule 3 for N((s))   

For regular expression (s) construct NFA N((s)) = N(s) 

N(s) 
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Exercise 
!  Construct N(r) for r = (a|b)*a 

– First break down the expression into smaller ones 
•  r1 = a 

•  r2 = b 

•  r3 = a|b 

•  r4 = (a|b) 

•  r5 = (a|b)* 

•  r6 = a 

•  r7 = (a|b)*a 

– Next, construct all the intermediate NFAs using 
rules 1,2, and 3 to reach the final NFA. 
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N(r1), N(r2), N(r3) 

3 2 
start a 

5 4 
start b 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

start 

r1 = a 

r2 = b 

r3 = a|b 

r4 = (a|b) 

r5 = (a|b)* 

r6 = a 

r7 = (a|b)*a 
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N(r4) = N((r3)) = N((a|b)) 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

start 

r1 = a 

r2 = b 

r3 = a|b 

r4 = (a|b) 

r5 = (a|b)* 

r6 = a 

r7 = (a|b)*a 

16 Copyright (c)  2012 Ioanna Dionysiou 



N(r5) = N((a|b)*) 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7 

start ε ε 

ε 

ε 

r1 = a 

r2 = b 

r3 = a|b 

r4 = (a|b) 

r5 = (a|b)* 

r6 = a 

r7 = (a|b)*a 
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N(r6) 

9 8 
start a 

r1 = a 

r2 = b 

r3 = a|b 

r4 = (a|b) 

r5 = (a|b)* 

r6 = a 

r7 = (a|b)*a 
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N(r7) = N(r5r6) 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7,8 
start ε ε 

ε 

ε 

9 
a 

r1 = a 

r2 = b 

r3 = a|b 

r4 = (a|b) 

r5 = (a|b)* 

r6 = a 

r7 = (a|b)*a 
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N(r7) = N(r5r6) 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7 
start ε ε 

ε 

ε 

8 
a 

r1 = a 

r2 = b 

r3 = a|b 

r4 = (a|b) 

r5 = (a|b)* 

r6 = a 

r7 = (a|b)*a 
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In-class Exercise 
!  Using Thompson’s construction algorithm 

construct NFA for  
– a(ab)*a 

–  (a|b|c)a 

– 01*0 
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Lecture Outline 
!  Construction of NFA from a regular 

expression 
– Thompson’s algorithm 

!  Conversion of NFA into DFA 
– Subset construction algorithm  
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Conversion of NFA into DFA 
!  NFA 

–  More than one transition from a state on input α 
–  Multivalued transition function makes it hard to simulate a 

NFA 
•  If there are many paths that spell out the same input string, we 

may have to consider them all before we find one that leads to 
acceptance or rejection 

!     Subset construction algorithm 
–  Constructs from a NFA a DFA that recognizes the same 

language 
–  Similar ideas to construct LR parsers (chapter 4) 
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General Idea 
!  Each DFA state corresponds to a set of NFA 

states 
– DFA uses its state to keep track of all possible 

states the NFA can be in after reading each input 
symbol 
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Subset Construction Algorithm 

Constructing a DFA from a NFA 

  

 Input: a NFA N 

 Output: a DFA D accepting the same language 

 

 Method: construct transition table Dtran so 
 that D will simulate “in parallel” all possible  
 moves N can make on a given input string 
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Operations on NFA states 

OPERATION DESCRIPTION 

ε-closure(s) 
 

Set of NFA states reachable from NFA state s 
on ε-transition alone 

ε-closure(T) Set of NFA states reachable from NFA state s 
in T on ε-transition alone 

move(T,α) Set of NFA states to which there is a 
transition on input symbol α from some NFA 
state s in T 

s represents an NFA state 
T represents a set of NFA states 
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Subset Construction 1  
 Before it sees any input symbol, N can be in any of 
the states in the set ε-closure(s0), where s0 is the 
start state of N  

ε-closure(0) = {0,1,2,4,7} = T 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7 
start ε ε 

ε 

ε 

8 
a 

9 
b 

10 
b 
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Computation of ε-closure  

push all states in T onto stack 
initialize ε-closure(T) to T 
while stack is not empty do  
begin 

 pop t, top element from stack 
 for each state u with an edge from t to u labeled  ε do  
 begin 
  if u is not in ε-closure(T) then 
   add u to ε-closure(T)  
   push u onto stack 
   end 

end 
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Subset Construction 2  
 Suppose that exactly the states in set T are reachable from s0 on a given 
sequence of input symbols, and let α be the next input symbol. On seeing 
α, N can move to any of the states in the set move(T, α). When we allow 
for transitions, N can be in any one the states in ε-closure(move(T, α)) 
after seeing α 

ε -closure(move(T,a)) =  

ε -closure(move({0,1,2,4,7},a)) = 

ε -closure({3,8}) = {1,2,3,4,6,7,8} 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7 
start ε ε 

ε 

ε 

8 
a 

9 
b 

10 
b 
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Subset Construction 3 
 We construct Dstates (the set of states of D) and 
Dtran (the transition table of D) in the following 
manner: 
 1.  Each state of D corresponds to a set of NFA 
states that N could be in after reading some 
sequence of input symbols, including all possible e 
transitions before or after symbols are read. 
 2.  The start state of D is e-closure(s0) 
 3.  States and transitions are added to D using the 
algorithm of next slide 
 4.  A state of D is an accepting state if it is a set of 
NFA states containing at least one accepting state of 
N.   
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Subset Construction 4 

Initially, ε-closure(s0) is the only state in Dstates and it is unmarked 
while there is unmarked state T in Dstates do begin 

 mark T 
 for each input symbol α do begin 
  U := ε-closure(move(T, α)) 
  if U is not in Dstates then 
   add U as an unmarked state to Dstates 
  Dtran[T, α] := U 
 end 

end 
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Example  

First, need to compute ε-closure(0) 
ε-closure(0) = {0,1,2,4,7} 
 
Let’s call this A = {0,1,2,4,7}, and this is the start state of the 
equivalent DFA  
Unmarked set = {A} 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7 
start ε ε 

ε 

ε 

8 
a 

9 
b 

10 
b 
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Example  

Input alphabet {a,b} 
 
Mark A and compute  ε-closure(move(A,a)) 
move(A,a) = {3,8}  
ε-closure(move(A,a)) =  
ε-closure(move({0,1,2,4,7},a)) =  
ε-closure({3,8}) = {1,2,3,4,6,7,8} 

 
Let’s call this B = {1,2,3,4,6,7,8}, and this is another state of the 
equivalent DFA Dtran[A,a] = B  
Unmarked set = {B} 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7 
start ε ε 

ε 

ε 

8 
a 

9 
b 

10 
b 

STATE    SYMBOL 

   a          b 

A B 
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Example  

Input alphabet {a,b} 
 
Mark A and compute  ε-closure(move(A,b)) 
move(A,b) = {5}  
ε-closure(move(A,b)) =  
ε-closure(move({0,1,2,4,7},b)) =  
ε-closure({5}) = {1,2,4,5,6,7} 

 
Let’s call this C = {1,2,4,5,6,7}, and this is another state of the 
equivalent DFA Dtran[A,b] = C 
Unmarked set = {B,C} 

b 

3 2 
a 

5 4 

6 1 

ε 

ε 

ε 

ε 

0 7 
start ε ε 

ε 

ε 

8 
a 

9 
b 

10 
b 

STATE    SYMBOL 

   a          b 

A B C 
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Continuing the example… 
!  The process is now repeated for all elements of the 

unmarked set 
–  Unmarked set = {B, C} 
–  These sets may produced new sets that are added to the 

unmarked set 

!  Eventually, all sets that are states of the DFA are 
marked 
–  Unmarked set = { } 

!  For the example, here are 5 different sets of states 
that are constructed 
–  A (start state), B, C, D, E (accepting state) 
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DFA and DTran  

b 

C 

a D B A 
start 

a 
b 

E 

b 

a 
a 

b 

b 

a 

STATE    SYMBOL 

   a          b 

A B C 

B B D 

C B C 

D B E 

E B C 
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