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Administrative 
!  Any questions about the syllabus? 

!  Course Material available at  
– www.cs.unic.ac.cy/ioanna 

!  Next time reading assignment  
–  [ALSU07] Chapters 1, 2  



Copyright (c)  2012 Ioanna Dionysiou 3 

Lecture Outline 
!  [ASU07] Chapter 2 - A simple syntax-directed 

translation 
–  Introduction to the material presented in [ALSU07] 

Chapters 3 through 6 
•  Number of basic compiling techniques 

•  Emphasis on the front-end of the compiler 

– Example presented is a program that translates 
infix expressions into postfix form 
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Infix expression --> Postfix Expression 

!  Translate infix expression into a postfix 
expression 
 

9 - 5 + 2   ==>   9 5 - 2 +  

 

What is the postfix expression of 8 * 2 + 2 - 1? 
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Lecture Outline 
!  Overview 

!  Syntax Definition 

!  Syntax-directed translation 

!  Parsing 

!  Translator for simple expressions 
•  Lexical analysis, symbol table, parsing 
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Overview  
!  Language definition  

– What its programs look like 
•  Syntax of the language 

– Context-free grammars (BNF) 

– What its programs mean 
•  Semantics of the language 

–  Informal descriptions 

!  Construct a compiler that translates infix 
expressions into postfix expressions 
– Operand operator operand 

– Operand operand operator 
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Overview 

Character 
stream Lexical 

Analyzer 
Syntax-directed 

Translator 

Intermediate 
Representation 

Token 
stream 

Is there something missing here? 
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Lecture Outline 
!  Overview 

!  Syntax Definition 

!  Syntax-directed translation 

!  Parsing 

!  Translator for simple expressions 
•  Lexical analysis, symbol table, parsing 
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Syntax Definition 
!  Introduce a notation 

– Context-free grammar (or grammar) 
•  Specify the syntax of a language 

!  A grammar describes the hierarchical 
structure of many programming language 
constructs 
– e.g. an if-else C statement 

•  if (expression) statement else statement 
– Concatenation of ???? 
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Syntax Definition 
!   if (expression) statement else statement 

•  keyword if 

•  Opening parenthesis ( 

•  expression  

•  Closing parenthesis ) 

•  statement 

•  Keyword else 

•  statement 

!  Rewrite the above statement 
stmt → if ( expr) stmt else stmt !
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Syntax Definition 

stmt → if ( expr) stmt else stmt!

This is a rule called production 

→  means “can have the form” 

 

if, else, (, ) are called tokens (terminals) 

 
stmt, expr are called nonterminals (sequence of tokens) 
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Context-free grammar components 

!  It has 4 components 
– A set of tokens, known as terminal symbols 
– A set of nonterminals 
– A set of productions where each production 

consists of 
•  A nonterminal called the left side of the production 
•  An arrow 
•  A sequence of tokens and/or nonterminals called the 

right side of the production 

– A designation of one of the nonterminals as the 
start symbol 
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Context-free grammar 

   stmt → if ( expr) stmt else stmt 

   expr → 0 

   expr → 1  

How many productions?  
Left side, right side, terminals, 
nonterminanls, start symbol? 
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Context-free grammar 
!  Conventions 

– Productions for the start symbol listed first 

– Productions with the same nonterminal on the left 
can be grouped together  

•  (separated by the symbol |) 

•  We will use this convention only when the right side 
consists of terminals 
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In-class Exercise 
!  Derive a grammar for expressions 

9 - 5 + 2 

3 -1 

7  

  

Such expressions are “lists of digits separated by 
plus or minus signs” or a list of one digit   
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Solution 

list → list + digit 

list → list - digit 

list → digit 

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  

A grammar derives strings by beginning with the start symbol and 
repeatedly replacing a nonterminal by the right side of a production for 
that nonterminal.  
 
All the strings that can be derived from the start symbol form the 
language defined by the grammar 
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In-class Exercise 
!  Deduce that 9 - 5 + 2 belongs to the language 

defined by the previous grammar. 

!  Does 9 belong to the language? 

!  Does 3 * 1 belong to the language?  
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Solution 
!  9 is a list  

– by production #3 
•  9 is a digit 

!  9 - 5 is a list  
– by production #2 

•  9 is a list and 5 is a digit 

!  9 - 5 + 2 is a list  
– by production #1   

•  9 - 5 is a list and 2 is a digit  
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Parse Tree for 9-5+2 

list 

list digit 

list digit 

digit 

9 - 5 + 2 

A node is labeled by a 
grammar symbol 
 
Interior Node and its 
children refer to a 
production 
    interior node refers 
    to the left side 
    children nodes refer 
    to right side  
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Parse Trees 
!  It pictorially shows how the start symbol of a 

grammar derives the string in the language 
– Suppose that we have production 

A → X Y Z 

A 

X Y Z 
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Parse Trees 
!  Formally, given a context-free grammar, a parse 

tree is a tree with the following properties: 
– The root is labeled by the start symbol 
– Each leaf is labeled by a token or by ε (empty string) 
– Each interior node is labeled by a nonterminal 
 
–  If  

•  A is the nonterminal labeling some interior node and  
•  X1, X2, …, Xn are the labels of the children of that node from 

left to right 
–  then  

•  A → X1 X2 …Xn is a production 

•  Here X1, X2, …, Xn stand for a symbol that is either a 
terminal or a nonterminal. 
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Parse tree  
!  The leaves of a parse tree read from left to 

right form the string generated or derived from 
the nonterminal at the root of the parse tree.  

!  Parsing is the process of finding a parse tree 
for a given string of tokens 
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Parse Trees and Ambiguity  
!  While it is clear that each parse tree derives 

exactly one string (read off its leaves), a 
grammar can have more than one parse tree 
generating a given string of tokens 
– Such a grammar is said to be ambiguous 

•  All we need to do is find a token string that has more 
than one parse tree 
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In-class Exercise  

string → string + string 

string → string - string 

string → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  

Can you derive more than one parse trees for the 
string 9 - 5 + 2? 
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Solution 
!  Yes, there are two parse trees depending on 

how we parenthesize the expression  
–  (9-5) + 2 

– 9 - (5 + 2) 

– Note: the previous grammar did not allow the 
second interpretation  
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Solution 
string 

string string 

string string 

9 

- 

5 

+ 
2 

string 

string 

string string 

string 

5 

+

2 

- 

9 
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Associativity of Operators 
!  9 + 2 + 1 is equivalent to (9 + 2) + 1 

!  9 - 2 - 1 is equivalent to (9 - 2) - 1 

!  When an operand has two operators to its left 
and its right, we need to decide which 
operator takes that operand 
– Operators +, -, *, \ are left-associative 

•  E.g operand with the + signs on both sides of it is taken 
by the operator to its left  
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Precedence of Operators 
!  Consider 9 + 5 * 2 

– Two possible interpretations 
•  (9+5)*2 

•  9+(5*2) 

– The Associativity of + and * do not resolve this 
ambiguity  

– We need to know the relative precedence of 
operators when more than one kind of operator is 
present 
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Precedence of Operators 
!  * has higher precedence than +  

–  It takes its operands before + does 

!  [ASU07] page 49  
– Grammar for arithmetic expressions that follow 

the Associativity and precedence rules.  
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Lecture Outline 
!  Overview 

!  Syntax Definition 

!  Syntax-directed translation 

!  Parsing 

!  Translator for simple expressions 
•  Lexical analysis, symbol table, parsing 
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Syntax-directed Translation 
!  To translate a programming construct the 

compiler may need to know  
– Type of the construct 
– Location of the first instruction in the target code 
– Number of instructions generated 

!  These are the attributes associated with 
constructs 
– An attribute may represent any quantity 

–  String, Type, Memory location 
–  Etc… 



Copyright (c)  2012 Ioanna Dionysiou 32 

Syntax-directed definition 
!  A formalism for specifying translations for 

programming language constructs 
– Uses a context-free grammar to specify syntactic 

structure of input 
•  With each grammar symbol it associates a set of 

attributes 

– With each production it associates a set of 
semantic rules for computing values of the 
attributes associated with the symbols appearing 
in the production 
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Annotated Parse Tree 
!  A translation is an input-output mapping 

– Suppose we have input x 
– First, construct parse tree for input x 
– Suppose that a node n in the parse tree is labeled 

by grammar symbol Y 
•  Write Y.a to denote the value of attribute a of Y at that 

node 
•  Value of Y.a at n is computed using the semantic rule 

for attribute a associated with the Y-production used an 
node n 

!  A parse tree showing the attribute values at 
each node is called an annotated parse tree 
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Synthesized Attributes 
!  An attribute is said to be synthesized if its 

value at a parse-tree node is determined from 
attributes at the children of the node 
– Advantage: evaluated during a single bottom-up 

traversal of the parse tree 

 



Copyright (c)  2012 Ioanna Dionysiou 35 

Example 
!  Syntax-directed definition for translating 

expressions consisting of digits separated by 
plus or minus signs into postfix notation  

PRODUCTION  SEMANTIC RULE 
expr → expr + term   expr.t := expr.t || term.t || ‘+’ 
expr → expr - term   expr.t := expr.t || term.t || ‘-’ 
expr → term   expr.t := term.t 
term → 0    term.t := ‘0’ 
term → 1    term.t := ‘1’ 
term → 2    term.t := ‘2’ 
… 
term → 9    term.t := ‘9’ 

String-valued attribute t represents the postfix notation for the expression generated 
by that nonterminal in a parse tree   
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In-class Exercise 
!  Derive the annotated parse tree for input 9 - 5 

+ 2 according to the syntax-directed definition 
shown at the previous slide 
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Solution  

expr.t = 9 5 - 2 + 

expr.t = 9 5 - term.t = 2 

expr.t = 9 term.t = 5 

term.t = 9 

9 - 5 + 2 

A syntax-directed definition does not impose any specific order for the evaluation of 
attributes in a parse tree. The only requirement is that the value of an attribute a is 
computed after all the other attributes that a depends on are computed 
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Translation Schemes 
!  Translation scheme is a context-free grammar 

in which program fragments called semantic 
actions are embedded within the right sides of 
productions 
– Similar to syntax-directed definition 

– Order of evaluation of the semantic rules is 
explicitly shown  



Copyright (c)  2012 Ioanna Dionysiou 39 

Production   Action 
expr → expr + term   { print(‘+’) } 
expr → expr - term   { print(‘-’) } 
expr → term    
term → 0    { print(‘0’) } 
term → 1    { print(‘1’) } 
term → 2    { print(‘2’) } 
… 
term → 9    { print(‘9’) } 

Actions translating expressions into postfix notation 
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Parse Tree for Translation Scheme 

expr 

expr term 

expr term 

term 

9 

- 

5 

+ 

2 
{print(‘9’)} 

{print(‘5’)} 

{print(‘2’)} {print(‘-’)} 

{print(‘+’)} 
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Lecture Outline 
!  Overview 

!  Syntax Definition 

!  Syntax-directed translation 

!  Parsing 

!  Translator for simple expressions 
•  Lexical analysis, symbol table, parsing 
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Parsing 
!  Process of determining if a string of tokens 

can be generated by a grammar. 
– Parse tree! 

!  A parser can be constructed for any grammar 
– Almost all programming language parsers 

•  Make a single left-to-right scan over input 

•  Look ahead 1 token at a time 
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Parsing Methods 
!  There are two methods, depending on the 

order in which nodes in the parse tree are 
constructed 
– Top-down 

•  Construction starts at the root and proceeds towards 
the leaves 

– Bottom-up 
•  Construction starts at the leaves and proceeds towards 

the root 
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Top-Down Parsing 
!  [ASU07] Figure 2.17 

– Top-down parsing while scanning the input from 
left-to-right 

– One lookahead token 
•  Select a production for the nonterminal depending on 

the token read 

•  Bakctracking is allowed 
–  A production is unsuitable if, after using the production, we 

cannot complete the tree to match the input string 

– Go back and choose another production   

–  EXCEPTION: predictive parsing (not allowed) 
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Predictive Parsing 
!  Predictive parsing is a form of recursive-

descent parsing 
– Execute a set of recursive procedures to process 

the input 

– A procedure is associated with each nonterminal 
of a grammar 

– Lookahead symbol unambiguously determines 
the procedure to selected for each nonterminal  
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Lecture Outline 
!  Overview 

!  Syntax Definition 

!  Syntax-directed translation 

!  Parsing 

!  Translator for simple expressions 
•  Lexical analysis, symbol table, parsing 
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Translator for infix->postfix 
!  [ASU07] Section 2.5 

– Using the techniques discussed so far, we can 
construct a syntax-directed translator (in java) that 
translates arithmetic expression into postfix form 
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Enhanced Translator 
!  [ASU07] Section 2.6 

– Add to the translator a lexical analyzer 
•  Eliminate white spaces and comments 

•  Recognize identifiers and keywords 
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Incorporating a Symbol Table 
!  Symbol table is a data structure 

– Stores information about programming language 
constructs 

•  E.g. during lexical analysis the character string that 
forms an identifier is saved in a symbol-table entry  

!  Two main routines 
–  Insert(s,t) : return index of new entry for string s, 

token t 

– Lookup(s) : return index of the entry for string s, or 
0 if s is not found 
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Handling reserved words 
!  Insert(“div”,div) 

– String div 

– Token div 

– Any subsequent call lookup(“div”) returns the 
token div, so div cannot be used as an identifier 
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Abstract Stack Machine 

Front  
end 

Back 
end 

Intermediate  
representation 

Target  
Program 

Source  
Program 

Intermediate representation: one option is 
code for an abstract stack machine 
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Abstract Stack Machine 
!  There are three classes of instructions 

–  Integer arithmetic 

– Stack manipulation 

– Control flow 
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Integer arithmetic 
!  Must implement each operator in the 

intermediate language 
– Addition, subtraction are supported directly by the 

abstract machine 

– Assumption: there is an instruction for each 
arithmetic operator 

– Abstract machine code for an arithmetic 
expression simulates the evaluation of a postfix 
representation for that expression using a stack 
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Example 
!  Evaluation of 1 3 + 5 * 

– Stack 1 

– Stack 3 

– Add two topmost elements, pop them and stack 
result 4 

– Stack 5 

– Multiply two topmost elements, pop them and 
stack result 20 

– Value on top of the stack at the end is the value of 
the entire expression (in this case 20) 
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Stack Manipulation 
!  Instructions 

push v    (push v onto stack) 

rvalue l   (push contents of data location l) 

lvalue l    (push address of data location l) 

pop         (remove value from top of the stack) 

:=            (the r-value on top is placed in the  

      l-value below it and both are popped) 

copy       (push a copy of the top value on the stack) 
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Control Flow 
!  Control-flow instructions for the stack machine 

are 
–  label l 

– goto l 

– gofalse 

– gotrue 

– halt 


