
COMP-421 Compiler Design

Presented by

Dr Ioanna Dionysiou

Copyright (c) 2012 Ioanna Dionysiou 2

Administrative
!  Any questions about the syllabus?

!  Course Material available at
– www.cs.unic.ac.cy/ioanna

!  Next time reading assignment
–  [ALSU07] Chapters 1, 2

Copyright (c) 2012 Ioanna Dionysiou 3

Lecture Outline
!  [ASU07] Chapter 2 - A simple syntax-directed

translation
–  Introduction to the material presented in [ALSU07]

Chapters 3 through 6
•  Number of basic compiling techniques

•  Emphasis on the front-end of the compiler

– Example presented is a program that translates
infix expressions into postfix form

Copyright (c) 2012 Ioanna Dionysiou 4

Infix expression --> Postfix Expression

!  Translate infix expression into a postfix
expression

9 - 5 + 2 ==> 9 5 - 2 +

What is the postfix expression of 8 * 2 + 2 - 1?

Copyright (c) 2012 Ioanna Dionysiou 5

Lecture Outline
!  Overview

!  Syntax Definition

!  Syntax-directed translation

!  Parsing

!  Translator for simple expressions
•  Lexical analysis, symbol table, parsing

Copyright (c) 2012 Ioanna Dionysiou 6

Overview
!  Language definition

– What its programs look like
•  Syntax of the language

– Context-free grammars (BNF)

– What its programs mean
•  Semantics of the language

–  Informal descriptions

!  Construct a compiler that translates infix
expressions into postfix expressions
– Operand operator operand

– Operand operand operator

Copyright (c) 2012 Ioanna Dionysiou 7

Overview

Character
stream Lexical

Analyzer
Syntax-directed

Translator

Intermediate
Representation

Token
stream

Is there something missing here?

Copyright (c) 2012 Ioanna Dionysiou 8

Lecture Outline
!  Overview

!  Syntax Definition

!  Syntax-directed translation

!  Parsing

!  Translator for simple expressions
•  Lexical analysis, symbol table, parsing

Copyright (c) 2012 Ioanna Dionysiou 9

Syntax Definition
!  Introduce a notation

– Context-free grammar (or grammar)
•  Specify the syntax of a language

!  A grammar describes the hierarchical
structure of many programming language
constructs
– e.g. an if-else C statement

•  if (expression) statement else statement
– Concatenation of ????

Copyright (c) 2012 Ioanna Dionysiou 10

Syntax Definition
!   if (expression) statement else statement

•  keyword if

•  Opening parenthesis (

•  expression

•  Closing parenthesis)

•  statement

•  Keyword else

•  statement

!  Rewrite the above statement
stmt → if (expr) stmt else stmt !

Copyright (c) 2012 Ioanna Dionysiou 11

Syntax Definition

stmt → if (expr) stmt else stmt!

This is a rule called production

→  means “can have the form”

if, else, (,) are called tokens (terminals)

stmt, expr are called nonterminals (sequence of tokens)

Copyright (c) 2012 Ioanna Dionysiou 12

Context-free grammar components

!  It has 4 components
– A set of tokens, known as terminal symbols
– A set of nonterminals
– A set of productions where each production

consists of
•  A nonterminal called the left side of the production
•  An arrow
•  A sequence of tokens and/or nonterminals called the

right side of the production

– A designation of one of the nonterminals as the
start symbol

Copyright (c) 2012 Ioanna Dionysiou 13

Context-free grammar

 stmt → if (expr) stmt else stmt

 expr → 0

 expr → 1

How many productions?
Left side, right side, terminals,
nonterminanls, start symbol?

Copyright (c) 2012 Ioanna Dionysiou 14

Context-free grammar
!  Conventions

– Productions for the start symbol listed first

– Productions with the same nonterminal on the left
can be grouped together

•  (separated by the symbol |)

•  We will use this convention only when the right side
consists of terminals

Copyright (c) 2012 Ioanna Dionysiou 15

In-class Exercise
!  Derive a grammar for expressions

9 - 5 + 2

3 -1

7

Such expressions are “lists of digits separated by
plus or minus signs” or a list of one digit

Copyright (c) 2012 Ioanna Dionysiou 16

Solution

list → list + digit

list → list - digit

list → digit

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A grammar derives strings by beginning with the start symbol and
repeatedly replacing a nonterminal by the right side of a production for
that nonterminal.

All the strings that can be derived from the start symbol form the
language defined by the grammar

Copyright (c) 2012 Ioanna Dionysiou 17

In-class Exercise
!  Deduce that 9 - 5 + 2 belongs to the language

defined by the previous grammar.

!  Does 9 belong to the language?

!  Does 3 * 1 belong to the language?

Copyright (c) 2012 Ioanna Dionysiou 18

Solution
!  9 is a list

– by production #3
•  9 is a digit

!  9 - 5 is a list
– by production #2

•  9 is a list and 5 is a digit

!  9 - 5 + 2 is a list
– by production #1

•  9 - 5 is a list and 2 is a digit

Copyright (c) 2012 Ioanna Dionysiou 19

Parse Tree for 9-5+2

list

list digit

list digit

digit

9 - 5 + 2

A node is labeled by a
grammar symbol

Interior Node and its
children refer to a
production
 interior node refers
 to the left side
 children nodes refer
 to right side

Copyright (c) 2012 Ioanna Dionysiou 20

Parse Trees
!  It pictorially shows how the start symbol of a

grammar derives the string in the language
– Suppose that we have production

A → X Y Z

A

X Y Z

Copyright (c) 2012 Ioanna Dionysiou 21

Parse Trees
!  Formally, given a context-free grammar, a parse

tree is a tree with the following properties:
– The root is labeled by the start symbol
– Each leaf is labeled by a token or by ε (empty string)
– Each interior node is labeled by a nonterminal

–  If

•  A is the nonterminal labeling some interior node and
•  X1, X2, …, Xn are the labels of the children of that node from

left to right
–  then

•  A → X1 X2 …Xn is a production

•  Here X1, X2, …, Xn stand for a symbol that is either a
terminal or a nonterminal.

Copyright (c) 2012 Ioanna Dionysiou 22

Parse tree
!  The leaves of a parse tree read from left to

right form the string generated or derived from
the nonterminal at the root of the parse tree.

!  Parsing is the process of finding a parse tree
for a given string of tokens

Copyright (c) 2012 Ioanna Dionysiou 23

Parse Trees and Ambiguity
!  While it is clear that each parse tree derives

exactly one string (read off its leaves), a
grammar can have more than one parse tree
generating a given string of tokens
– Such a grammar is said to be ambiguous

•  All we need to do is find a token string that has more
than one parse tree

Copyright (c) 2012 Ioanna Dionysiou 24

In-class Exercise

string → string + string

string → string - string

string → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Can you derive more than one parse trees for the
string 9 - 5 + 2?

Copyright (c) 2012 Ioanna Dionysiou 25

Solution
!  Yes, there are two parse trees depending on

how we parenthesize the expression
–  (9-5) + 2

– 9 - (5 + 2)

– Note: the previous grammar did not allow the
second interpretation

Copyright (c) 2012 Ioanna Dionysiou 26

Solution
string

string string

string string

9

-

5

+
2

string

string

string string

string

5

+

2

-

9

Copyright (c) 2012 Ioanna Dionysiou 27

Associativity of Operators
!  9 + 2 + 1 is equivalent to (9 + 2) + 1

!  9 - 2 - 1 is equivalent to (9 - 2) - 1

!  When an operand has two operators to its left
and its right, we need to decide which
operator takes that operand
– Operators +, -, *, \ are left-associative

•  E.g operand with the + signs on both sides of it is taken
by the operator to its left

Copyright (c) 2012 Ioanna Dionysiou 28

Precedence of Operators
!  Consider 9 + 5 * 2

– Two possible interpretations
•  (9+5)*2

•  9+(5*2)

– The Associativity of + and * do not resolve this
ambiguity

– We need to know the relative precedence of
operators when more than one kind of operator is
present

Copyright (c) 2012 Ioanna Dionysiou 29

Precedence of Operators
!  * has higher precedence than +

–  It takes its operands before + does

!  [ASU07] page 49
– Grammar for arithmetic expressions that follow

the Associativity and precedence rules.

Copyright (c) 2012 Ioanna Dionysiou 30

Lecture Outline
!  Overview

!  Syntax Definition

!  Syntax-directed translation

!  Parsing

!  Translator for simple expressions
•  Lexical analysis, symbol table, parsing

Copyright (c) 2012 Ioanna Dionysiou 31

Syntax-directed Translation
!  To translate a programming construct the

compiler may need to know
– Type of the construct
– Location of the first instruction in the target code
– Number of instructions generated

!  These are the attributes associated with
constructs
– An attribute may represent any quantity

–  String, Type, Memory location
–  Etc…

Copyright (c) 2012 Ioanna Dionysiou 32

Syntax-directed definition
!  A formalism for specifying translations for

programming language constructs
– Uses a context-free grammar to specify syntactic

structure of input
•  With each grammar symbol it associates a set of

attributes

– With each production it associates a set of
semantic rules for computing values of the
attributes associated with the symbols appearing
in the production

Copyright (c) 2012 Ioanna Dionysiou 33

Annotated Parse Tree
!  A translation is an input-output mapping

– Suppose we have input x
– First, construct parse tree for input x
– Suppose that a node n in the parse tree is labeled

by grammar symbol Y
•  Write Y.a to denote the value of attribute a of Y at that

node
•  Value of Y.a at n is computed using the semantic rule

for attribute a associated with the Y-production used an
node n

!  A parse tree showing the attribute values at
each node is called an annotated parse tree

Copyright (c) 2012 Ioanna Dionysiou 34

Synthesized Attributes
!  An attribute is said to be synthesized if its

value at a parse-tree node is determined from
attributes at the children of the node
– Advantage: evaluated during a single bottom-up

traversal of the parse tree

Copyright (c) 2012 Ioanna Dionysiou 35

Example
!  Syntax-directed definition for translating

expressions consisting of digits separated by
plus or minus signs into postfix notation

PRODUCTION SEMANTIC RULE
expr → expr + term expr.t := expr.t || term.t || ‘+’
expr → expr - term expr.t := expr.t || term.t || ‘-’
expr → term expr.t := term.t
term → 0 term.t := ‘0’
term → 1 term.t := ‘1’
term → 2 term.t := ‘2’
…
term → 9 term.t := ‘9’

String-valued attribute t represents the postfix notation for the expression generated
by that nonterminal in a parse tree

Copyright (c) 2012 Ioanna Dionysiou 36

In-class Exercise
!  Derive the annotated parse tree for input 9 - 5

+ 2 according to the syntax-directed definition
shown at the previous slide

Copyright (c) 2012 Ioanna Dionysiou 37

Solution

expr.t = 9 5 - 2 +

expr.t = 9 5 - term.t = 2

expr.t = 9 term.t = 5

term.t = 9

9 - 5 + 2

A syntax-directed definition does not impose any specific order for the evaluation of
attributes in a parse tree. The only requirement is that the value of an attribute a is
computed after all the other attributes that a depends on are computed

Copyright (c) 2012 Ioanna Dionysiou 38

Translation Schemes
!  Translation scheme is a context-free grammar

in which program fragments called semantic
actions are embedded within the right sides of
productions
– Similar to syntax-directed definition

– Order of evaluation of the semantic rules is
explicitly shown

Copyright (c) 2012 Ioanna Dionysiou 39

Production Action
expr → expr + term { print(‘+’) }
expr → expr - term { print(‘-’) }
expr → term
term → 0 { print(‘0’) }
term → 1 { print(‘1’) }
term → 2 { print(‘2’) }
…
term → 9 { print(‘9’) }

Actions translating expressions into postfix notation

Copyright (c) 2012 Ioanna Dionysiou 40

Parse Tree for Translation Scheme

expr

expr term

expr term

term

9

-

5

+

2
{print(‘9’)}

{print(‘5’)}

{print(‘2’)} {print(‘-’)}

{print(‘+’)}

Copyright (c) 2012 Ioanna Dionysiou 41

Lecture Outline
!  Overview

!  Syntax Definition

!  Syntax-directed translation

!  Parsing

!  Translator for simple expressions
•  Lexical analysis, symbol table, parsing

Copyright (c) 2012 Ioanna Dionysiou 42

Parsing
!  Process of determining if a string of tokens

can be generated by a grammar.
– Parse tree!

!  A parser can be constructed for any grammar
– Almost all programming language parsers

•  Make a single left-to-right scan over input

•  Look ahead 1 token at a time

Copyright (c) 2012 Ioanna Dionysiou 43

Parsing Methods
!  There are two methods, depending on the

order in which nodes in the parse tree are
constructed
– Top-down

•  Construction starts at the root and proceeds towards
the leaves

– Bottom-up
•  Construction starts at the leaves and proceeds towards

the root

Copyright (c) 2012 Ioanna Dionysiou 44

Top-Down Parsing
!  [ASU07] Figure 2.17

– Top-down parsing while scanning the input from
left-to-right

– One lookahead token
•  Select a production for the nonterminal depending on

the token read

•  Bakctracking is allowed
–  A production is unsuitable if, after using the production, we

cannot complete the tree to match the input string

– Go back and choose another production

–  EXCEPTION: predictive parsing (not allowed)

Copyright (c) 2012 Ioanna Dionysiou 45

Predictive Parsing
!  Predictive parsing is a form of recursive-

descent parsing
– Execute a set of recursive procedures to process

the input

– A procedure is associated with each nonterminal
of a grammar

– Lookahead symbol unambiguously determines
the procedure to selected for each nonterminal

Copyright (c) 2012 Ioanna Dionysiou 46

Lecture Outline
!  Overview

!  Syntax Definition

!  Syntax-directed translation

!  Parsing

!  Translator for simple expressions
•  Lexical analysis, symbol table, parsing

Copyright (c) 2012 Ioanna Dionysiou 47

Translator for infix->postfix
!  [ASU07] Section 2.5

– Using the techniques discussed so far, we can
construct a syntax-directed translator (in java) that
translates arithmetic expression into postfix form

Copyright (c) 2012 Ioanna Dionysiou 48

Enhanced Translator
!  [ASU07] Section 2.6

– Add to the translator a lexical analyzer
•  Eliminate white spaces and comments

•  Recognize identifiers and keywords

Copyright (c) 2012 Ioanna Dionysiou 49

Incorporating a Symbol Table
!  Symbol table is a data structure

– Stores information about programming language
constructs

•  E.g. during lexical analysis the character string that
forms an identifier is saved in a symbol-table entry

!  Two main routines
–  Insert(s,t) : return index of new entry for string s,

token t

– Lookup(s) : return index of the entry for string s, or
0 if s is not found

Copyright (c) 2012 Ioanna Dionysiou 50

Handling reserved words
!  Insert(“div”,div)

– String div

– Token div

– Any subsequent call lookup(“div”) returns the
token div, so div cannot be used as an identifier

Copyright (c) 2012 Ioanna Dionysiou 51

Abstract Stack Machine

Front
end

Back
end

Intermediate
representation

Target
Program

Source
Program

Intermediate representation: one option is
code for an abstract stack machine

Copyright (c) 2012 Ioanna Dionysiou 52

Abstract Stack Machine
!  There are three classes of instructions

–  Integer arithmetic

– Stack manipulation

– Control flow

Copyright (c) 2012 Ioanna Dionysiou 53

Integer arithmetic
!  Must implement each operator in the

intermediate language
– Addition, subtraction are supported directly by the

abstract machine

– Assumption: there is an instruction for each
arithmetic operator

– Abstract machine code for an arithmetic
expression simulates the evaluation of a postfix
representation for that expression using a stack

Copyright (c) 2012 Ioanna Dionysiou 54

Example
!  Evaluation of 1 3 + 5 *

– Stack 1

– Stack 3

– Add two topmost elements, pop them and stack
result 4

– Stack 5

– Multiply two topmost elements, pop them and
stack result 20

– Value on top of the stack at the end is the value of
the entire expression (in this case 20)

Copyright (c) 2012 Ioanna Dionysiou 55

Stack Manipulation
!  Instructions

push v (push v onto stack)

rvalue l (push contents of data location l)

lvalue l (push address of data location l)

pop (remove value from top of the stack)

:= (the r-value on top is placed in the

 l-value below it and both are popped)

copy (push a copy of the top value on the stack)

Copyright (c) 2012 Ioanna Dionysiou 56

Control Flow
!  Control-flow instructions for the stack machine

are
–  label l

– goto l

– gofalse

– gotrue

– halt

