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Abstract—This paper proposes a network architecture that uti-
lizes novel resource prediction models for optimal selection of
multimedia content provision methods. The proposed research
approach is based on a prototype system, which exploits a resource
prediction engine (RPE), utilizing time series and epidemic spread
models, for optimal and balanced distribution of the stream-
ing data among content delivery networks, cloud-based providers
and home media gateways. The proposed epidemic diseases mod-
els adopt the characteristics of the multimedia content delivery
over the network architecture. In this context, this paper aims
to present the advantages of using such models, by presenting
and analyzing an epidemic spread scheme for video-on-demand
(VoD) delivery, to predict future epidemic spread behavior. In
addition, this paper presents two algorithms, adopted in the pro-
totype network architecture, for optimal selection of multimedia
content delivery methods, as well as balanced delivery load, by
exploiting the RPE. Both algorithms and models are evaluated to
establish their efficiency, toward effectively predicting future net-
work traffic demands. The simulation results verify the validity of
the proposed approach, identifying fields for future research and
experimentation.

Index Terms—Content delivery networks (CDNs), epidemic
spread models, media distribution middleware (MDM), multime-
dia services systems, network architectures, quality of experience
(QoE), resource prediction engine (RPE).

I. INTRODUCTION

G IVEN the tremendous evolution of multimedia-related
technologies over the Internet, more pressure is applied
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for further research and development on the field of multime-
dia content distribution. A significant part of the global Internet
traffic is generated by video- and audio-on-demand services or
other multimedia services, while the amount of this traffic is
expected to double in the future [1], leading toward the Future
Media Internet. Recent advances in connected media technolo-
gies and social networks are the driving forces, while broadband
infrastructure growth and cloud computing that has emerged
as a new paradigm for hosting and delivering services over
the Internet are the keystones for the upcoming Future Media
Internet. The rapidly transforming environment that surrounds
the citizens forces them to the demand of more community-
centric experiences through networked/connected media and
social networks and to even better quality of experience (QoE).
Media content delivery plays a key role for the QoE, pressing
for more research on novel network architectures, as well as
the relative components that allow efficient and balanced con-
tent delivery. In addition, novel algorithms and models for the
prediction of the resources are vital to be adopted for efficient
multimedia content provision.

Tackling such challenges, this paper goes beyond the cur-
rent state-of-the-art, elaborating on a new multimedia ser-
vices delivery solution. The proposed solution is based on the
optimum allocation of the resources used for content trans-
mission to efficiently satisfy different users’ requests through
the exploitation of existing servers’ infrastructures capabili-
ties. Such capabilities are available in conventional clouds (i.e.,
public or private computing infrastructure configurations, usu-
ally offered by over-the-Top providers) and in content delivery
networks (CDNs). Additionally, they can be offered by home
media gateway clouds [i.e., home gateways/community gate-
ways configurations, exploited in peer-to-peer (P2P) mode].
The proposed approach foresees a new business model in multi-
media services delivery over the Internet, strongly but smoothly
leveraging (in an evolutionary way) new mechanisms and sys-
tems. Among others an epidemic spread model is proposed
that is proven to accurately describe a video-on-demand (VoD)
spread.

In this context, this paper is organized as follows. Section II
presents related work on resource prediction engines (RPEs)
and on epidemic models, as well as the research motivation
of this paper. Section III elaborates on the proposed research
approach based on a novel network architecture that utilizes
an RPE, an epidemic model, and two algorithms for optimal
multimedia services provision. Finally, Section IV provides the
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evaluation results and Section V includes the conclusion of this
paper, accompanied with fields for future research.

II. RELATED WORK AND RESEARCH MOTIVATION

Several existing research attempts elaborate on the combi-
nation of different delivery methods, in order to achieve better
QoE for the users. In [2], Xu et al. propose a CDN-P2P hybrid
architecture for cost-effective streaming media distribution that
combines the advantages of using CDN for providing high QoE
with the low cost of using P2P-based stream. Yin et al. [3]
present the design and deployment of a hybrid CDN-P2P sys-
tem for live video streaming, demonstrating the improvement
in startup delay time and in stability. In [4], Ciullo et al. also
propose a peer-assisted video distribution in order to reduce the
server workload and to introduce scalability to the system. They
suggest a stochastic fluid framework that allows the estimation
of the needed bandwidth for the satisfaction of the user requests
based on predefined scenarios. In an energy-aware approach in
[5], Mandal et al. analyzed and presented the advantages of
the integration between CDN and P2P networks [6]–[9]. Zhang
et al. conducted a measurement study on Kankan, which is one
of the leading VoD streaming service providers in China and is
based on a hybrid CDN-P2P architecture. They present how the
provider utilizes the P2P network for storage and streaming of
videos, and how the CDN servers assist the streaming proce-
dure [10]. Current research approaches focus on how to benefit
from the combination of the different delivery methods but they
do not take consideration of handling each resource separately.
In comparison to such approaches, our proposed solution goes
beyond the current state-of-the-art, by handling each resource
(i.e., streaming channel) separately based on the prediction of
the future demand for each resource, as well as the predicted
network metrics. The early prediction before the actual need
provides to the proposed system the ability to enforce manage-
ment actions to maintain a high QoE for the users [11], [12].

An RPE constitutes an important part of multimedia content
delivery system, in order to offer the desired QoE to the end
users [13]–[15]. Its role is to provide the ability to efficiently
predict the needed bandwidth capacity and the upcoming net-
work fluctuations. The prediction engine has to be based on
novel methods and models that can accurately forecast the
future demands, in order to trigger through a management plane
the proper actions for keeping the desired quality for the stream-
ing sessions. In [16], Niu et al. present some time-series analy-
sis techniques to predict the server bandwidth demand and the
peer upload for content delivery in peer-assisted VoD services.
The analysis includes the prediction of future population for
each video channel, by analyzing and fitting to existing models,
past data about the population of video channels. The seasonal
autoregressive integrated moving average (ARIMA) model [17]
is exploited, for avoiding the periodicity. Additionally, they use
machine learning techniques for inferring the initial popula-
tion of a newly released channel, by utilizing pass data from
newly released videos as training data. For the prediction of
the server bandwidth demands by a video channel at future
time, the autoregressive moving-average (ARMA) model was
used [17]. They prove that the entire procedure has reasonable

computation cost. In [18], Niu et al. present a system for VoD
providers in the Cloud that provides the ability to predict the
upcoming need for bandwidth in order to autoscale accordingly.
The near future demands’ expectations are estimated based on
the history of demands as monitored by the cloud monitoring
services. This provides the opportunity to reserve the mini-
mum bandwidth needed for satisfying the demand in the desired
quality. In a similar manner, our proposed RPE utilizes a com-
bination of statistical models for the prediction of future needs.
The innovation originates from the selection of the appropri-
ate model, out from a pool of statistical models (ARMA [17],
ARIMA [17], theta method [19], and cubic splines [20]), which
better describes each content delivery. Additionally, the epi-
demic model proposed by this paper provides to the RPE the
capability to predict sudden and intense increase of delivery
need for specific content. For an RPE able to forecast future
demands, the recent advances in connected media technologies
and social networks should be taken into account. Social net-
works play a significant role in content delivery, by providing
ways of interactions among users that can lead to a lightning
spread of content [21]–[23]. In [24], Gonçalves et al. suggested
a probabilistic resource provisioning approach that utilizes the
basic susceptible-infectious-recovered (SIR) model, developed
for epidemiology spreading, to represent the sudden and intense
workload overflow in VoD delivery process. More specifically,
they use Markov chain to describe the behavior of the users
and they trace the cases of epidemic spread, or as the call it
buzz effect, by introducing a hidden Markov model with two
different rates to represent the buzz and buzz-free behavior.
Contrary, we propose an epidemic model with more states, cus-
tomized to describe the epidemic spread of content through
the proposed overall system. Additionally, our suggestion for
the prediction is based on fitting historical data into the pro-
posed model. Epidemic model spreading in scale-free networks
has been intensively studied [25]. In [26], Pastor–Satorras and
Vespignani analyzed data from computer virus infections and
they defined a dynamical model for the spreading of infections
on scale-free networks. The spread of computer viruses really
resembles the epidemic spread of human diseases. In this con-
text, this paper extends the basic disease models, by presenting
a novel model that can be used to accurately describe the mul-
timedia content delivery (i.e., VoD delivery) and so it can help
forecasting epidemic spread of multimedia content. The major-
ity of disease models are based on a splitting in compartments
of the individuals in a population based on their disease status
[25], [27]–[29]. The basic SIR model provides the founda-
tions of almost all mathematical epidemiology. The differential
equations that describe the model are as follows:

dS

dt
= b ·N − β · S · I − d.S (1a)

dI

dt
= β · S · I − δ · I − d.I (1b)

dR

dt
= δ · I − d ·R (1c)

S + I +R = N. (1d)

In these equations, S, I , and R refer to the number of suscep-
tible, infectious, and recovered individuals, respectively, in a
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Fig. 1. Proposed network architecture.

population of size N . The other parameters are the birth rate b,
the natural death rate d, and the rate of recovery from infection
δ. The force of infection π, is the rate, at which susceptible
individuals become infected. It is a function of the number
of infectious individuals; this parameter contains information
about the interactions between individuals that lead to the trans-
mission of infection. When the population is randomly mixing,
the force of infection can be calculated as follows:

π = β · I
N

(1e)

where β is the effective number of contacts per unit time. This
leads to a nonlinear term (β.S.IN ) representing the transmission
of infection, generating a variety of rich dynamical behaviors.
Theoretical modeling of how diseases spread in complex net-
works is based on the assumption that the propagation is driven
by reaction processes and that the transmission occurs from
every infected neighboring entity at each time step, producing
a diffusion of the epidemics on the network. Possible modifi-
cations on the available states of the SIR model lead to some
widely used epidemic models like the susceptible-infectious-
susceptible (SIS) model where the recovered state does not
exist and individuals are considered immediately susceptible.
In the same context, the maternally derived immunity-SIR
(MSIR) model compared to the SIR model includes a state
for a population born with immune to the disease. In such a
model, an additional differential equation is needed to describe
the transitions from state M to the state S. This equation takes
into consideration the percentage of population with immunity
and its lasting period [30], [31]. Similar models have been

used in finite-size scale-free networks, for traffic-driven epi-
demic spread [32], for efficient data streaming [33] and for virus
spread in such networks [34]. Also, this approach has been used
in the area of multimedia content distribution [21] in dynamic
resource management [24], and for segmented file sharing [35].
Although there is impressive research in epidemic models for
use for the description of behavior of computer networks, there
is a lack of a model, able to describe the specific need for
multimedia content delivery architectures. Part of this paper is
dedicated to an epidemic model for that purpose. Additionally,
this paper elaborates on a network architecture that predicts the
future content delivery demands and the future network usage,
by utilizing novel models and algorithms, performing all the
necessary adaptations to deliver the content in an optimal and
balanced way for the optimal provision of the desired quality of
service (QoS) and QoE to the end users.

III. EPIDEMIC MODEL FOR OPTIMAL MULTIMEDIA

SERVICES PROVISION USING AN RPE

A. Network Architecture

The introduction of an RPE with epidemic models utiliza-
tion, toward the provision of multimedia services, demands a
network architecture with management components in different
layers that cooperate during the multimedia delivery process,
achieving optimal content delivery. The proposed network
architecture is shown in Fig. 1. The upper layer is called cen-
tral management and control (M&C) plane and it coordinates
the collaboration environment, by interchanging information
with existing M&C planes of the CDN and cloud providers, as
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Fig. 2. MDM internal architecture.

well as the distributed M&C plane of the media home gateway
cloud (MHGC) provider, consisted of user gateways, forming a
P2P network. The proposed network architecture as presented
in Fig. 1 consists of the following entities: a media distribu-
tion middleware (MDM), a media QoE meter (MQM), a media
services manager (MSM), an enhanced home gateway (EHG),
and a media advanced streamer (MAS). In a bottom to top pre-
sentation of components based on the functionality, the EHG
entity is part of the home equipment of the end users. The con-
trol modules of EHGs constitute the MHGC M&C plane and
they are responsible for creating the MHGC ad hoc system
from a set of P2P connected EHGs. Each EHG receives con-
tent requests from the users, requesting data from the MDM,
about which MHGC peers should get involved to efficiently
deliver requested content. EHG collaborates with MSM entities
that reside in CDN/cloud M&C planes and manage all service
providers resources, to obtain media content requested by the
user, if the content is not stored on any of EHGs belonging
to given MHGC. The MSM, according to the recommenda-
tions received from the MDM, takes a decision on which server
should stream the requested media and with which bitrate. In
this way, the MSM, contrary to the existing solutions, per-
forms adaptation decision, taking into account not only the
available bandwidth, but also considering other important infor-
mation addressed by the MDM, such as the estimated QoE
value and the prediction of the potential upcoming streaming
sessions. The MAS entity resides in the CDN/cloud domain
as a standalone component. Its role is to perform the stream-
ing process, according to the instructions received from the
MSM/EHG entity. MQM component is responsible for con-
tinuous monitoring of network metrics at the users and the
service providers domain access points, as well as the users
context and preferences. Based on the data gathered by the
set of the MQM probes, distributed all over the domain, this
entity provides to the MDM the related data about the current

network conditions and the estimated value of QoE available
for a user. Moreover, the MQM sends alerts to the MDM, only
if any of the monitored QoS/QoE parameters declines below
the allowed level. MDM is the main component of the central
M&C plane. It executes all necessary operations and deter-
mines all data required for optimal allocation of the available
resources at each resource providers domain. As a result, the
MDM returns guidelines, which resources should be used for
handling given users request, to achieve the best (in terms of
efficiency) resource exploitation.

B. RPE for Optimal Multimedia Services Provision

The MDM adopts an RPE, in order to be able to predict future
demands for resources. The prediction is divided into long-term
prediction for future demands for resources and short-term pre-
diction for some important network metrics like throughput.
The long-term prediction takes as input the demand for each
resource in the past, using a combination of statistical meth-
ods and algorithms for the adaptivity to description models,
in order to predict future demands. This provides the oppor-
tunity to the system to make the optimal distribution of data
in clouds, CDNs, and EHGs based on the prediction before
the actual need. On the other hand, the short-term prediction is
used for predicting and preventing upcoming network conges-
tion issues, by triggering the proper management actions. Fig. 2
presents the internal architecture of the MDM component. The
QoS/QoE politics traffic data history component collects and
stores the monitoring data delivered from the MQM. It forwards
it periodically to the Media Traffic Forecast to generate the pre-
diction for the traffic in the network. The Media Traffic Forecast
utilizes the epidemic model for the prediction of the upcom-
ing epidemic or not spread of the content and the time-series
models for the prediction of future values of the resources. The
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Fig. 3. Epidemic model for efficient multimedia content provision.

outcome of the forecasts is used as input to the resource allo-
cator/scheduler. It uses algorithms that combine the current and
predicted values of specific metrics to decide on the optimal
delivery methods and the most suitable servers to perform the
multimedia content delivery. The results are feeding the MSM
component, as recommendations regarding which server should
stream the requested media, while at the same time the band-
width allocation optimizer calculates the optimal bandwidth
allocation for the P2P delivery between the MHGC devices.
It is an online system, which takes into consideration the net-
work metrics that come from the MQM to decide on the most
suitable peers to perform the streaming. It delivers that informa-
tion directly to the MHGC devices. MHGC devices exchange
management information between them and together they con-
stitute an M&C plane that manages the P2P network between
the EHG devices. The adaptivity to resources conditions com-
ponent ensures that the bandwidth allocation optimizer runs
periodically to retain the optimal suggestions based on updated
information from the resources and network.

C. Epidemic Models for Prediction of VoD Download Rate

This paper examines the effectiveness of the epidemic mod-
els on the prediction of VoD usage as part of the general issue of
optimal content delivery. As shown in Fig. 3, the model divides
the population into several compartments based on the percent-
age of the population in each state. The susceptible (S) group
includes subscribers that can download the video, the active
(A) includes the users that are currently downloading the video,
the infected (I) contains the users that downloaded the video
and they can spread it through social networks (if they liked
the video), the recovered (R) contains the users that passed
from the infected phase but they do not spread the video any
more (after some period of time) while the deleted (D) group
includes users that removed the video after sometime or the
video was automatically removed from the cache after some
period of time. The turned_down (T) group includes the users
that belonged to the S category and they took the decision to
turn down the Video, so they will never download it. In the
model, NS(t), NA(t), NI(t), NR(t), ND(t), NT (t), t ≥ 0 are
stochastic processes representing the time evolution of each
population.

Suppose there are n clients of the VoD provider, they all
belong to the group S at time = 0, when a VoD is initially
uploaded by the provider. The transition rate from state S to
A consists of the probability to have a new spontaneous viewer,
plus the probability to have some users that learned about the

video from their social contacts and they came to a decision to
watch the video. So, (1e) of the SIR model that expresses the
nonlinear term of the rate of transmission of infection can be
extended to

π(t) = γ + β ·NS(t) ·NI(t) (2a)

where β is the social network contact rate for users based on the
specific video, and γ is the number of spontaneous viewers that
in some cases can be considerable important since a specific
VoD may be advertised and promoted by the VoD provider. For
the transition from active state to infected state, there is a need
of consideration of the download rate of users and of length of
the video. Since the video download is happening directly dur-
ing viewing and there are mechanisms for balanced delivery,
the time needed for the transition is considered as a random
variable and is expressed as a Poisson process with mean value
of the duration of the video. The transitions, from infected to
recovered and from recovered to deleted, are also considered
as random variables since each user can spread the information
to its social network for a random period of time and can also
keep the video in in its EHG device again for a random period
of time. So, for the proposed model, the specific transitions are
again described as Poisson processes with mean times the esti-
mations of how long the users are spreading the information to
their social networks and the period that the video stays in the
device of each user. The rates can be expressed as follows:

δ(t) =
1

video duration
(2b)

κ(t) =
1

spread period
(2c)

λ(t) =
1

keep in cache period
. (2d)

This model makes the following assumptions. 1) A user that
downloads a video will never request it again. 2) There are no
changes in user’s population/subscribers. 3) Users in T state
that turned down the video will never become susceptible again.
The first two assumptions help on making the analysis sim-
pler without losing the generality, since they are well fitting a
VoD provider use case. Regarding the first assumption, when
a user downloads a video, it remains in its local EHG for
a few days. So, a redownload is performed only in the case
that a user wishes to view it again after that period. This case
does not importantly affect the analysis, since the epidemic
spread occurs in short periods of time and with the existence of
cache it is unlikely to have double downloads during the study
of a single epidemic spread incidence. Similarly, the second
assumption is realistic since the population of the subscribers
remains almost constant within such short periods. The third
assumption does not really change the analysis, since it is not
possible to calculate the population of state T before the actual
spread of the video. In the measurements, S and T populations
are handled together and they can be separated only in the end
of each VoD life cycle. The following equations describe the
model:
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Fig. 4. Percentage of population in each state.

dS

dt
= −(β · I + γ) · S (3a)

dT

dt
= (β · I + γ) · S · (1− p) (3b)

dA

dt
= (β · I + γ) · S · p− δ ·A (3c)

dI

dt
= δ ·A− κ · I (3d)

dR

dt
= κ · I − λ ·R (3e)

dD

dt
= λ ·R (3f)

S + T +A+ I +R+D = 1. (3g)

Fig. 4 presents simulation results executed in MATLAB.
The aforementioned differential equations were expressed as
MATLAB equations and the simulation was performed in
timesteps. After each timestep, part of the population was mov-
ing to a different state based on the equations and the rates.
In simulation results of Fig. 4, the rates are as follows: β =
0.5, δ = 0.1, κ = 0.01, λ = 0.005, p = 0.8. The whole popula-
tion belongs to the S state(S = 1) when t = 0. At time =
50 timesteps, the population of active (A) increases showing
that there are active users downloading the video, while at
time = 70 timesteps the population of Infected(I) increases sig-
nificantly. An important outcome is the final population in state
turn down(T) that tends to p− 1 = 0.2, while the population
of deleted (D) tends to p = 0.8 as expected since 80% of the
population chooses to view the video. The most important line
is the A(t) since it depicts the bandwidth need for covering the
needs of the active downloads. It is clear that in case of epi-
demic spread of a specific video, the population of simultaneous
downloads is significantly increased, something that increases
the difficulty in delivering high QoS. A solution to the problem
is the use of P2P delivery complementary to the cloud and CDN
delivery. An important observation is that by the time when the
active (A) users introduce a significant increase in their popu-
lation, there is always an important number of users in infected
(I) and recovered (R) states that can seed the video for the them

through P2P delivery method. Finally, it is clear that the trans-
mission from recovered (R) state to deleted (D) does not affect
the needed recovered population when it is most needed.

Lemma 1: if γ > 0 then

lim
t−>∞ (T (t) +D(t)) = 1

Proof: T (t) = T (t)− T (0) =
∫ t

0
dT
dt dt. �

Since dT
dt = −(1− p)dSdt , we conclude that T (t) =

− ∫ t

0
(1− p)dSdt dt = −(1− p)(S(t)− S(0)) = (1− p)(1−

S(t)). Notice that dD
dt ≥ 0, hence D is increasing. D(s) ≤ 1 for

all s therefore lims→∞ dD
dt |s = 0. Hence, lims→∞ R(s) = 0 if

we assume λ > 0. Similarly,
1) lims→∞ dR

dt |s = 0, and therefore lims→∞ I(s) = 0
(assuming that κ > 0);

2) lims→∞ dI
dt |s = 0, and therefore lims→∞ A(s) = 0

(assuming that δ > 0);
3) lims→∞ dA

dt |s = 0, and therefore lims→∞ S(s) = 0
(assuming that γ > 0).

Hence, since S + T +A+ I +R+D = 1, we
see that lims→∞ T (s) +D(s) = 1 By the equation
T (t) = (1− p)(1− S(t)), we see that lims→∞ T (s) = 1− p.
Hence, we also see that lims→∞ D(s) = p.

The outcome of Lemma 1 is the fact that in infinite time
all the population will finally go to the state T-turn down and
D-deleted, given we have γ > 0. The lemma is useful for the
analysis after the end of the content delivery for extracting the
percentage of users that turned down the video.

An important metric for the model is the basic reproduction
rate of the epidemic R0 that can be calculated as in (global
analysis of multistrains SIS, SIR, and MSIR epidemic models)

R0 =
p ∗ β
κ

.

Lemma 2: if R0 > 1 then the epidemic cannot maintain
itself.

Proof: If R0 > 1, then on average, each infected individ-
ual infects more than one other member of the population and a
self-sustaining group of infectious individuals will propagate.
If R0 < 1, then the epidemic cannot maintain itself because
each individual, on average, infects less than one member of
the population. �

The estimation of R0 is not easy before the actual spread of
the VoD because the β value is not easy to be predicted, since
the social impact of each VoD is different. An estimation can be
done based on some of the video properties (category, actors,
director, etc.) and some history data, but this is out of the scope
of the specific paper.

It is interesting to study and compare the model in the case
where there is no epidemic spread (R0 < 1). To simplify the
analysis, it is safe to say that if there is no epidemic spread it
can be considered that β = 0. In this case, the infected (I) and
recovered (R) population are in the same state captured (C). The
equations are transformed as follows:
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Fig. 5. Simulation results without epidemic spread.

dS

dt
= −γ · S (4a)

dT

dt
= γ · S · (1− p) (4b)

dA

dt
= γ · S · p− δ ·A (4c)

dC

dt
= δ ·A− λ · C (4d)

dD

dt
= λ · C (4e)

S + T +A+ C +D = 1. (4f)

By solving the first-order differential equations for S and A
with consideration that S(0) = 1 and A(0) = 0 the outcome is

S(t) = e−γ.t (5a)

A(t) =
γ · p

δ − γ · p (e
−γ.t + e−δ.t). (5b)

Fig. 5 presents simulation results when the rates are as fol-
lows: δ = 0.1, κ = 0.01, λ = 0.005, p = 0.8. The difference it
is obvious since the active (A) population remains very low
through the whole delivery process. If we consider that the
system is able to deliver simultaneously to up to a specific per-
centage of users, then the value of γ can be modified. The VoD
provider is able to manage the advertise, or the position in the
menu of each VoD and so it can modify the γ value of the
spontaneous users.

Lemma 3: Prediction based on the model. If the A(t) is
exponential then it is epidemic, if the A(t) is polynomial then
it is not epidemic. In case of predicting an epidemic spread of
the video the algorithm is modified.

Proof: In model with epidemic spread

dA

dt
= (β · I + γ) · S · p− δ ·A ≈ β · I · S · p.

In model without epidemic spread

dA

dt
= γ · S · p− δ ·A ≈ γ · S · p.

�

Fig. 6. Implementation architecture of the RPE.

The multiplication of S and I populations is what causes the
epidemic spread. An early perception of such behavior could
benefit the content delivery system.

D. Resource Prediction Algorithms With Use of Epidemic
Models

An internal view of the implementation architecture of the
prediction engine as part of the Media Traffic Forecast is pre-
sented in Fig. 6. Input comes from the monitoring service
and more specifically the MQM through the QoS/QoE poli-
tics traffic data history component. The prediction engine is
implemented in Java and it is divided into two parts based
on the functionality concerning time-series models and epi-
demic models. For the implementation of time-series models,
there is a use of the JRI, Java Interface [36] for the inter-
actions with the R-system [37]. R is a very popular free
software environment for statistical computing and graphics.
The standard stats package of R-system includes multiple time-
series models and prediction methods. The forecast package
[38], [39] of R implements automatic forecasting with multi-
ple methods, including ARIMA models, exponential smoothing
methods, Theta method [19], cubic splines [20], and many
others. Hyndman and Khandakar in [39] present the imple-
mentation of exponential smoothing methods and the ARIMA
modeling approach in the forecast package. The proposed pre-
diction engine uses the aforementioned packages, extending
them in order to achieve optimal prediction. If a long-term (i.e.,
for the next days) prediction has to be achieved for the needed
bandwidth of a specific VoD, the prediction engine needs to
exploit the history of the bandwidth reservation for the specific
VoD. The history data are utilized for fitting in the proper statis-
tical model, suitable for the specific VoD and then the forecast
function performs the prediction. The result is the estimation of
the need of bandwidth for the specific VoD after 1 h. This value
feeds the resource allocator/scheduler to decide how to serve
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the estimated future need. The epidemic model is implemented
in Java. It examines the history data behavior to conclude if
it resembles the exponential function something that would
predict that the VoD spreads with epidemic speed based on
Lemma 3. The MDM component uses the predicted future val-
ues for the metrics, in order to take the decisions for delivery of
requested media, which may be streamed: 1) directly from the
cloud; 2) through deployed surrogate servers of the CDN; 3) by
establishing an MHGC ad hoc system and using a combined
P2P-based technology of distribution with multisource, multi-
destination congestion control algorithms; or 4) a combination
of parts or all of them (thanks to stream-switching adaptation
technique). The results are forwarded to the MSM component
that is responsible for the actual streaming of the data to the
user. The selection algorithm is presented. Algorithm 1 gets as
input the current and predicted bandwidth needed for the deliv-
ery of specific content over the system and triggers the proper
mechanisms to accomplish it in an optimal way. The need-
edBW variable that represents the expected needed bandwidth
for the overall delivery of a specific VoD, takes the higher value
among the current and the predicted bandwidth need as calcu-
lated by the prediction engine. The epidemicSpread boolean
variable is assigned a TRUE or FALSE value based on the
behavior similarity to the exponential function that indicates
an epidemic spread (Lemma 3). If epidemicSpread = TRUE
then the algorithm uses all delivery methods simultaneously
and it informs the VoD provider to reduce the advertisement
of the specific VoD. If epidemicSpread = FALSE it makes
the selection based on preset thresholds for bandwidth usage,
based on administrative high level decisions and network sta-
tus. If neededBW is below the low threshold, only the cloud
delivery will be used. If it is above, CDN servers will be used.
The number of CDNs to be used is defined as a percentage of
the available servers, based on the distance of neededBW from
the low and high threshold. After the high threshold is reached,
a P2P delivery method is exploited. This algorithm provides
the advantage that the data are not distributed before the actual
need. In the case of a VoD with low customers demand, the
CDNs will not been used for its distribution. On the other hand,
if a VoD becomes viral and it is spreading epidemically, an
early prediction will occur that will allow to use all the avail-
able delivery methods to distribute the VoD will rapidly. Finally,
the P2P delivery method will be used, only when needed, while
at the time that this happens, the number of users already pos-
sessing the specific video will be satisfactory with those users,
acting as seeders to distribute the VoD to the others.

The aforementioned load balancing algorithm for the load
balancing among data centers (DCs) is presented. Algorithm 2
takes as input the table W [x, y] that includes the workload of
each VoD on each DC and the number of DCs to be used for
the specific content delivery. It updates the table and returns it
with the new values to be used for the balanced distribution of
the content. The algorithm divides number 1 (the whole per-
centage) to the number DCs, which will be used, to calculate
the portion of delivery requests that each DC should handle.
Then, it finds out which column represents the specific VoD,
if it already exists, or it assigns a new column for a new VoD.
Finally, it selects which DCs will be used, starting with those

Algorithm 1. Delivery Method Selection Algorithm

1: procedure SELECTCONTENTDELIVERYMETHODS

2: neededBW ← maximum(currentBW,predictedBW)
3: epidemicSpread← fits(exponentialFunction)
4: if epidemicSpread = TRUE then
5: Use Cloud, all available CDNs and P2P
6: Reduce the V oD advertisement
7: Run the load balancing algorithm for DCs
8: else
9: switch neededBW do
10: case neededBW < lowThreshold
11: Use only Cloud.
12: case lowThreshold < neededBW <

highThreshold
13: NoOfDCstoUse←

neededBW−lowThreshold
highThreshold−lowThreshold ∗AvailDCs

14: Use Cloud and NumberOfDCstoUse DCs.
15: Run the load balancing algorithm for DCs
16: case neededBW > highThreshold
17: Use Cloud , all available CDNs and P2P .
18: Run the load balancing algorithm for DCs

Algorithm 2. Load Balancing Algorithm

1: procedure LOADBALANCING

2: portion← 1/NoOfDCsToUse
3: if VoD=new then
4: Add a column to the W [x , y ] table
5: column=Column that represents the current VoD
6: Create a sorted table with the rows,

based on the number of 0 they include
7: W [x, column] = portion,

where x takes the first NoOfDCsToUse
values of the sorted table

that have more zero values in their row, meaning that they do
not serve many VoD channels.

IV. PERFORMANCE EVALUATION ANALYSIS AND

EXPERIMENTAL RESULTS

This section demonstrates the ability of the epidemic models
to describe the spread of content over content delivery sys-
tems, and the effectiveness of the RPE to predict future values
of network metrics of the utilization of network paths. The
effectiveness of the whole proposed system is demonstrated by
simulations of the usage scenarios. Finally, this section makes a
comparison of the ability of the proposed epidemic model that
was specially designed for describing content delivery, to make
an early prediction of an upcoming epidemic spread of content
compared to other general purpose epidemic models. The mon-
itoring data were collected by a VoD platform [40] and all the
videos had a resolution of 480p.

For the evaluation of the forecast algorithms for the short-
term prediction, the monitoring data of the bandwidth usage for
serving the need of a specific VoD were utilized. The collected
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Fig. 7. Measured versus predicted value for the bandwidth usage for VoD.

Fig. 8. Test scenarios for bandwidth usage of VoD prediction.

measurements were for a total of 30 min with a period of 5 s,
but to avoid periodicity of data, the mean value per minute was
used. The 80% (24 min) of the data was exploited to feed the
prediction engine. The RPE as described in Section III-D fits
the data into the most suitable model and it manages to per-
form a prediction for the future values. The remaining 20% of
the data is then used for the evaluation, through a comparison
between the predicted and the actual values as shown in Fig. 7.
The important part of the graph is after the first 24 min, where
it is clearly depicted that the measured values remain very close
to the predicted ones.

The prediction performance of the RPE is presented in Fig. 8.
It includes the predicted value showing also the limit of 95%
confidence and the corresponding (after the time passes) mea-
sured values of bandwidth needs for a VoD channel. The test
scenarios presented are for 5, 30, and 60 min prediction. It is
clear that the predicted values are near the actual values mea-
sured and in all cases the upper and lower limits of the 95%
confidence interval include the measured value.

For the evaluation of the long-term prediction models, we
collected the number of views per day for two videos provided
by a VoD platform [40]. The collected data are for 175 days.
The 80% of the data was exploited to feed the prediction engine,
while the rest of the data was used for the evaluation through
a comparison between the predicted and the actual values as
shown in Fig. 9. In the delivery of the first video, as shown
in Fig. 9(a), the time-series models are able to predict future
demands with enough accuracy. In the second video delivery,
as shown in Fig. 9(b), the time-series models are incapable to
predict the upcoming enormous increase of the demand since
the measured data did not fit well in any time-series model. The
prediction based on the time-series models forecasted a steady
number of viewers that was proven to be wrong. The prediction
based on the epidemic model managed to forecast the upcom-
ing epidemic spread and the predicted values are close to the

Fig. 9. Measured and predicted number of views per day. (a) Average video.
(b) Video that spreads epidemically.

measured values. So, the advantage of using Algorithm 1 is
depicted since the algorithm tries to fit the epidemic models
and then if there is no epidemic spread it utilizes the time-series
models.

For the evaluation of the ability of the proposed epidemic
model to make early prediction of an epidemic spread of con-
tent through a VoD platform, we compare its performance with
that of some general purpose epidemic models. The compari-
son involves our proposed epidemic model that was specifically
designed for describing the spread of content and presented
in Section III-C, the basic SIR model as described in detail
in Section II and the MSIR model [31]. We collected from a
VoD platform history data for 17 videos that we consider as
viral because they had a peak demand of more than 10% of
the total subscribers as simultaneous viewers. The data about
each Video includes measurements about the number of users
that were downloading the video each moment, and so we man-
aged to divide them into the basic compartments of the three
models. In each model, a number of variables can get values
under some constrains. We extended the forecast package of
R-system [39] to represent these models and we used a func-
tion that automatically assigns values to the variables to fit in
the model based on the history data. The amount of data needed
in order to deduce that the data can be fitted in the model reveals
the time when the actual prediction will be possible in real time.
Fig. 10 presents the needed time to predict the epidemic spread,
as a percentage of the total lapse time from the release of the
video until reaching the maximum value of simultaneous users,
for multiple maximum values of simultaneous users based on
the seventeen videos of the sample. The graph clearly depicts
that all models are able to predict the epidemic spread and in
case of a high epidemic spread the prediction is early. In all
cases, the proposed model has better results since it makes an
earlier prediction. The SIR model does not perform very well



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

Fig. 10. Time needed for the prediction of the epidemic behavior.

Fig. 11. Fraction of intervals of QoE (a) without and (b) with MDM.

possibly because of the lack of the needed states to represent
accurately the content delivery process. MSIR model performs
well, possibly because it has the state M (maternally derived
immunity) that corresponds to the state T (turn-down) state of
the proposed model. It performs worse than the proposed model
since it does not distinguish the active users with the infected,
nor the recovered to the deleted. The proposed model, provides
more variables for customization, and it can be customized to
represent the process of content delivery more accurately.

A metric with significant importance in the content delivery
process is the QoE for the users. In [3], Yin et al. defined quality
metrics taking into consideration the time spent in buffering a
video compared to the total viewing time to conclude about the
QoE. They managed to present results with mean value for the
quality metric greater than 0.99 with all measures greater than
0.95. In our approach and since we have a complete network
architecture, the MQM component is able to calculate the QoE
based on specific dynamical algorithms [41]. The algorithms
combine TCP-, buffer-, and media content-related metrics as
well as user requirements and expectations to extract a value in
the range 0–1 that describes the QoE for each video stream. The
closest to 1 implies the highest quality. We collected monitoring
results for a specific popular VoD 2 days with normal demand.
The first day the MDM was disabled and none of its function-
alities were used. As shown in Fig. 11, the fraction confidence
interval of QoE for the users when the MDM is not utilized is
higher than 0.90 while the mean value is about 0.99. In the sec-
ond day, when we had the utilization of MDM, the QoE remains
over 0.94 for all cases with an average of 0.999.

The rest of the section presents experimental simulation
results for evaluation of the performance and the offered reli-
ability in streaming activities, offered by the proposed system.

Fig. 12. Number of participating nodes with community streaming factor.

Fig. 13. CCDF sharing reliability among devices with download time (ms) for
requests < 20 MB.

Toward implementing such scenario, a common look-up appli-
cation service for video streaming is set in each node, to enable
nodes requesting a stream from a certain user. Fig. 12 shows
that the number of the participating nodes is increasing, when
MDM-enhancing broadcasting is used, instead of a generic
broadcasting. This indicates the enhancement that has been
done by the MDM in the broadcasting process, whereas the
community streaming factor W , as introduced in [42], indi-
cates the level of robustness in receiving neighboring feedback
during the process of streaming. The total delay time with the
number of simultaneous transmissions is shown in Fig. 13. The
total measured delay is significantly reduced in the presence
of MHGC (P2P delivery), whereas the utilization of the exist-
ing infrastructure increases the overall delays when multiple
transmissions take place.

V. CONCLUSION

This paper presents a novel network architecture, a novel
epidemic spread model, and two algorithms for optimal selec-
tion of content delivery methods. The proposed epidemic model
was analyzed and it was shown through simulation results that
it can describe the VoD process when the social interactions
among users are high for the specific VoD. Based on the anal-
ysis, we were able to perform prediction for the VoD spread
based on the model. This paper also presents two algorithms
that take advantage of epidemic models prediction and time-
series analysis prediction for selecting the optimal delivery
method and for load balancing between DCs. The experimental
results prove that the prediction engine is accurate and overall
the content delivery process gets benefits from the utilization
of the model and algorithms. Future directions in our on-going
research encompass the further study of the epidemic model for
the export of multiple predicted metrics that could be utilized
by algorithms for a more accurate forecast of the need or even
a better localization of the demand.
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